您好,欢迎您

【35under35】沙欢欢医生:BRAF V600E突变转移性结直肠癌治疗现状及进展

2023年08月21日
作者:沙欢欢
医院:江苏省肿瘤医院           

   

沙欢欢
主治医师

江苏省肿瘤医院 肿瘤内科
至今发表SCI论文20余篇。其中第一/共一作者14篇,累计总影响因子55+。
主持国自然青年项目1项,参与国自然面上项目1项。

结直肠癌(colorectal cancer, CRC)是最常见的恶性肿瘤之一,其发病率在全球恶性肿瘤中已上升至第三位,死亡率位居第二位[1]。在我国,随着人们生活方式和饮食习惯的不断改变,我国结直肠癌的发病率和死亡率均逐年上升,已经成为严重危害我国人民健康的重要问题。约22%的患者初诊时即被诊断为转移性结直肠癌(metastatic colorectal cancer, mCRC),其5年生存率仅15.1%[2]。随着对CRC分子特征更深入的了解,运用新型分子标志物来指导晚期CRC的精准治疗显得尤为重要。约有10%的mCRC患者携带BRAF突变,其中最常见的突变类型为BRAF V600E突变[3]。然而标准化疗以及BRAF抑制剂对BRAF V600E突变型mCRC患者疗效有限。本文针对BRAF V600E突变mCRC中的相关治疗进展及临床试验展开综述。

1 BRAF突变结直肠癌特点

RAS-RAF-MEK-ERK(mitogen-activated protein kinase,MAPK)信号通路是结直肠癌发病机制中的一个关键途径。表皮生长因子(epidermal growth factor,EGF)与细胞膜中的表皮生长因子受体(epidermal growth factor receptor,EGFR)结合并在细胞质域通过磷酸化激活受体。磷酸化的EGFR激活MAPK信号通路,导致影响细胞增殖和分化的转录因子上调[4],使细胞分裂不受控制并发生血管生成和转移[5]。90% BRAF突变是第600个氨基酸处缬氨酸被谷氨酸取代,并且与KRAS/NRAS突变相互排斥[6]。研究发现BRAF V600E突变CRC具有独特的临床特征,其在老年女性、右半结肠、低分化、粘液腺癌、易发生腹膜后和远处淋巴结转移的CRC中常见[7]。结直肠癌亚型联盟根据基因表达谱分型将结直肠癌分为四种分子亚型(concensus molecular subtypes, CMS),发现大部分(>70%)BRAF突变CRC为CMS 1型,以微卫星不稳定性(microsatellite instability,MSI)和免疫细胞浸润为特征,与DNA修复缺陷、高甲基化和高突变负荷相关[8]。另一项研究也基于基因表达谱将BRAF V600E突变CRC患者分成两个分子亚型:BM1和BM2。BM1的特征是KRAS/mTOR/AKT/4EBP1/EMT高度活化,BM2的特征是细胞周期和周期检查点进程失调,其中BM1亚型患者预后较差[9]。BRAF V600E突变一直是mCRC治疗中的难点,化疗相对不敏感,常规化疗只有2~6个月的无进展生存期(progression-free survival,PFS)和10个月的总生存期 (overall survival,OS),肿瘤进展迅速,预后极差[10]

2 BRAF V600E突变型mCRC的治疗现状

2015年,TRIBE研究中28例BRAF V600E突变患者亚组分析显示FOLFOXIRI联合贝伐珠单抗较FOLFIRI联合贝伐珠单抗可为患者带来生存获益(mPFS:7.5个月vs 5.5个月,mOS:19.0个月vs 10.7个月)[11]。然而,在后续随访的III期TRIBE-2研究中FOLFOXIRI联合贝伐珠单抗并未显示出生存获益[12],对照组的不同可能是TRIBE与TRIBE2研究在BRAF亚组结果不一致的原因之一。此外,2020年JCO发布的一项meta分析也显示FOLFOXIRI三药联合贝伐珠单抗对比两药(FOLFOX或FOLFIRI)联合贝伐珠单抗,并没有显著改善BRAF突变患者的PFS和OS[13]

随机 II 期 VOLFI 研究对比FOLFOXIRI 联合或不联合抗EGFR单抗在BRAF V600E突变 mCRC一线治疗中的疗效,发现使用帕尼单抗联合三药化疗方案具有较高的客观缓解率(objective response rate,ORR)(85.7% vs 22.2%)[14]。回顾性研究ESTER结果显示,一线接受西妥昔单抗联合三药化疗可以为BRAF突变mCRC亚组患者带来60%的ORR,也同样具有不错的缩瘤效果。然而另一些meta分析却发现BRAF V600E突变mCRC患者使用西妥昔单抗或帕尼单抗对PFS和OS的改善均无统计学差异[15, 16],因此抗EGFR抗体在BRAF突变mCRC中的生存获益仍存在争议。但考虑到VOLFI和ESTER研究中纳入的BRAF V600E突变人群较少,研究结论仍需要在更大规模的研究中去证实。

一项meta分析比较了化疗联合抗 EGFR 对比联合抗 VEGF在mCRC一线治疗中的疗效,但结果表明两组BRAF 突变患者的OS并无统计学差异[17]。但至今为止,在BRAF突变型CRC中获得的最具受益的数据还是来源于三药化疗联合贝伐珠单抗,因此,ESMO指南对于BRAF V600E突变型ECOG评分为0或1的mCRC患者仍推荐在一线治疗中采用FOLFOXIRI联合贝伐珠单抗的强化化疗方案[18]。最近,FIRE4.5也公布了FOLFOXIRI联合贝伐珠单抗对比FOLFOXIRI联合西妥昔单抗一线治疗的疗效,结果显示,前者可获得更长的PFS(10.7个月vs 6.7个月)[19],再次证实了三药化疗联合贝伐珠单抗的治疗地位。

3 BRAF V600E突变型mCRC的治疗策略进展

3.1 MAPK通路双联靶向阻断策略

2011年,FDA批准了第一个BRAF抑制剂维莫非尼,标志着黑色素瘤治疗的新突破。但是,BRAF抑制剂单药在BRAF V600E突变 mCRC中仅有微弱的抗肿瘤效果,有效率仅约5%[20]。研究发现,BRAF被阻断后会负反馈激活上游EGFR信号通路,并通过旁路激活下游的蛋白激酶MEK和ERK,从而再次活化MAPK信号通路[21]。EGFR通路负反馈调节机制及MAPK通路的旁路激活使治疗思路产生了从“点”到“面”的变化,联合治疗成为必然之路。因此大部分研究开始了BRAF抑制剂联合EGFR抑制剂或MEK抑制剂的探索。
一项关于BRAF抑制剂联合 MEK抑制剂的I/II期研究纳入43名患者,其结果显示ORR 为12%,mPFS为3.5个月 [22]。早期几项I、II期临床研究表明BRAF 联合EGFR抑制剂虽然比单BRAF抑制剂有一定程度的疗效提高,但结果不理想(ORR:4~22%,mPFS:3.2~4.2个月,mOS:7.1~13.2个月)[23-27]。2016年一项评估维莫非尼+伊立替康+西妥昔单抗(VIC方案)治疗BRAF V600E突变mCRC患者的Ib期研究初步确认了VIC方案的有效性和耐受性(ORR:37%,mPFS:7.7个月)[28]。接着SWOG S1406 II期研究显示VIC方案与IC相比,显著提高ORR和DCR(ORR:16% vs 4%,DCR:67% vs 22%),与对照组相比,VIC方案显著提高了mPFS,达到4.2个月(HR=0.50,95%CI 0.32~0.76,P=0.001),然而mOS未达到统计学意义(HR=0.77,95%CI 0.50-1.18,P=0.23)。安全性方面VIC组的3~4级不良事件高于IC组[29]。基于SWOG S1406研究结果,VIC方案成为CSCO结直肠癌诊疗指南推荐的BRAF V600E突变晚期肠癌二线治疗方案。

此外,III期随机对照BREAKWATER研究也已经在进行中,该研究在BRAF V600E突变初治mCRC患者中比较康奈非尼+西妥昔单抗双靶、双靶+FOLFIRI/mFOLFOX6、FOLFIRI/mFOLFOX6±贝伐珠单抗的疗效。该研究以期在不同的亚组找出最适合的一线治疗方案。最新结果显示康奈非尼+西妥昔单抗联合FOLFOX6/FOLFIRI的ORR达70%,方案的缓解持续时间(duration of remission, DOR)非常可观,PFS、OS数据尚需进一步随访。生物标志物的探索分析也值得期待[30]。如果这项研究获得积极结果,那么可能会改变BRAF V600E突变mCRC一线的治疗标准。

最新的NAUTICAL CRC研究评估康奈非尼+西妥昔单抗方案对比伊立替康/FOLIFIRI+西妥昔单抗方案治疗BRAF V600E突变的mCRC中国患者的疗效,在安全性导入阶段入组的患者均未显示出剂量限制性毒性,研究现已经进入关键的随机研究部分,期待后期的结果为BRAF V600E突变mCRC中国人群带来更好的选择和获益。

3.2 MAPK通路三联靶向阻断策略

3.2.1康奈非尼、西妥昔单抗联合阿培利司

为了进一步改善BRAF V600E突变 mCRC患者的预后,基于BRAF抑制剂的三药联合治疗应运而生。其中一项研究探索了BRAF抑制剂、EGFR抑制剂与磷酸肌醇3-激酶(Phosphatidylinositide 3-kinases, PI3K)抑制剂阿培利司的联合。在Ib期剂量递增研究中发现三联方案的ORR为18%,疾病控制率(disease control rate,DCR)为93%,是标准治疗组的两倍,但III/IV级不良反应发生率高达79% [26]。随后的II期研究中,三联方案的PFS高于康奈替尼联合西妥昔单抗的两药方案,但未发现统计学上的显著差异(5.4个月vs 4.2个月,HR =0.69,P = 0.064)。在中期分析中,OS为次要评估终点,三联组的mOS为15.2个月,而双联组未达到中位OS。三联方案的不良事件发生率更高,包括贫血、高血糖和脂肪酶水平升高[27]

3.2.2 BRAF抑制剂+EGFR单抗+MEK抑制剂

在双联抑制的基础上再进一步研究,发现如果同时阻断下游的MEK通路可能效果更好,因此衍生了BRAF抑制剂+EGFR单抗+MEK抑制剂联合治疗模式。2018年Ryan B. Corcoran等人进行了达拉非尼(D)、帕尼单抗(P),联合或不联合MEK抑制剂曲美替尼(T)的临床试验,结果显示,D+P、D+P+T和T+P三组缓解率分别为10%、21%、0%。治疗前和治疗期间活检组织的药效学分析显示,D+P+T组疗效提高与增加MEK抑制剂有关[31]

之后,BEACON研究进一步夯实了多靶点联合治疗的重要地位。BEACON研究纳入既往接受过一线或二线化疗失败的BRAF V600E突变mCRC患者,1:1:1随机分配患者至康奈非尼+西妥昔单抗+比美替尼,康奈非尼+西妥昔单抗,FOLFIRI +西妥昔单抗三个治疗组,不良反应方面三联组痤疮样皮炎、腹泻、恶心、便秘和呕吐的发病率高于双联组。最新结果显示三联和二联靶向治疗的mPFS(4.5个月 vs 4.3个月 vs 1.5个月)、mOS(9.3个月 vs 9.3个月 vs 5.9个月)和ORR(26.8% vs 19.5% vs 1.8%)均优于化疗联合西妥昔单抗组,虽然三靶方案组的ORR更高,但三联和二联靶向治疗在PFS和OS方面未有显著差异。该研究最新结果显示加用MEK抑制剂的临床获益有限,且两药联合方案安全性更优,足以使OS获益最大化。亚组分析结果显示对于体力状况评分为1、器官转移数量≥3个、C反应蛋白高于上限、原发肿瘤未切除的患者,更能从三靶治疗中获益[32]

此外,Élez等人对BEACON 研究中部分患者的循环肿瘤 DNA(circulating free DNA, cfDNA)分析发现,BRAF突变等位基因频率>5%的患者更能从MEK抑制剂联合方案中获益[33]。另一项真实世界的回顾性研究结果与BEACON结论相似,三联方案有较高的ORR,但在PFS和OS方面与二联靶向方案没有差异[34]。继BEACON CRC研究后,日本JapicCTI-205146研究数据报告了三联方案在日本人群中的安全性和有效性。在76例存在靶病灶的患者中,21例得到缓解,ORR为27.6%,DCR为82.9%,mPFS 5.26个月,mOS 8.08个月[35]

鉴于三联方案在晚期多线治疗中的成果,研究者开始探索其在一线治疗中的疗效。ANCHOR研究是一项单臂II期研究,进一步探讨了三联方案在一线治疗中的作用。对比化疗加单靶治疗,在入组人群基线更弱的情况下,三联方案仍然取得了近一半的ORR,达47.8%,大多数患者疾病得到控制,DCR达88%,mPFS达5.8个月,mOS达17.2个月,最常见的不良事件与BEACON研究中观察到的三联疗法的不良事件相似,其耐受性良好,可控性强[36]。再次证实多靶点联合阻断的治疗模式能够为BRAF V600E突变的mCRC患者带来获益。但由于这项研究并不是III随机研究,因此三联靶向方案目前在一线还不能代替标准的治疗方案,未来可能会为患者带来新的治疗选择。

综上,CSCO指南对二线及以上的BRAF V600E突变患者推荐双靶联合方案,但对于肿瘤负荷大且需要快速缩瘤的患者,可以考虑MEK抑制剂联合治疗。未来,三联方案优势人群的甄选将是BRAF V600E突变转化研究的重要方向之一。相信随着BRAF V600E突变mCRC一线精准治疗的探索之路不断向前推进,越来越多的患者将从中获益。

3.3 免疫治疗

3.3.1 MSI-H/dMMR BRAF V600E突变 mCRC的治疗

一项纳入CAIRO、CAIRO2、COIN和FOCUS四项III期研究的meta分析发现34.6%的MSI-H/dMMR肿瘤患者中观察到BRAF V600E突变,21.2%的BRAF V600E突变的肿瘤患者中发现MSI-H/dMMR[37]。此外Rose等人还发现,程序性死亡配体-1(programmed cell death 1 ligand 1, PD-L1)的表达与BRAF突变之间存在相关性,在BRAF突变结直肠肿瘤中观察到更高水平的 CD8+ 肿瘤淋巴细胞浸润[38],BRAF V600E突变可通过MLH1基因启动子的超甲基化导致MSI-H表型,提示BRAF突变mCRC患者可能受益于免疫治疗[39]。KEYNOTE-164[40]、KEYNOTE-177[41]、ChecKmate-142[42, 43]等研究发现BRAF突变mCRC亚组患者对免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)有一定疗效。这些结果表明,对于难治性BRAF V600E MSI-H 的mCRC患者,使用免疫治疗可能是合理有效的选择。III期试验CheckMate 8HW评估纳武利尤单抗和伊匹木单抗联合用药疗效,将为这部分患者提供进一步的数据支持[44]。根据KEYNOTE-177数据,FDA和EMA已经批准帕博利珠单抗了作为MSI/dMMR mCRC(包括BRAF V600E突变)的一线治疗[45]。然而,这些免疫治疗的研究中BRAF突变的患者数量很少,无法精确估计免疫治疗药物对该患者群体的益处。基于此,Ⅱ期SEAMARK研究针对BRAF V600E合并MSI-H/dMMR mCRC患者进行了帕博利珠单抗+康奈非尼+西妥昔单抗对比帕博利珠单抗单药一线治疗的疗效研究[46],期待接下来的结果展示为这一部分患者提供更多的治疗方案。

3.3.2 MSS/pMMR BRAF V600E突变 mCRC的治疗

对于BRAF V600E 微卫星稳定(microsatellite stabilization, MSS)mCRC患者,免疫联合MAPK信号传导抑制剂的试验也正在进行中。2022 ASCO GI上报道了一项康奈非尼联合西妥昔单抗及纳武利尤单抗治疗后线MSS、BRAF V600E mCRC的Ⅰ/Ⅱ期研究(NCT04017650),目前最新的结果ORR高达45%,DCR高达95%,mPFS为7.3个月,mOS为11.4个月[47]。这项研究在BRAF抑制剂、EGFR抑制剂基础上联合ICIs用于BRAF V600E突变MSS患者的治疗,达到了预定的疗效终点且耐受性良好,提示免疫疗法作为一种新的联合治疗方法,可用于MSS BRAF V600E 突变的mCRC特定亚群。其理论基础是EGFR/BRAF抑制剂诱导DNA损伤,增加变异性并诱导了短暂的MSI-H表型[48],联合ICIs或许可以逆转肿瘤细胞对EGFR/BRAF抑制剂产生的耐药。另外,西妥昔单抗具有抗体依赖的细胞介导的细胞毒性作用(antibody-dependent cell-medicated cytotoxicity, ADCC)作用,可诱导免疫原性细胞死亡,促进免疫细胞浸润,与PD-1单克隆抗体在结直肠癌中具有协同作用;BRAF抑制剂还可以通过增加癌症相关抗原表达和肿瘤反应性T细胞浸润来直接影响抗肿瘤免疫[49]。这样的三联方式可能提高BRAF V600E突变mCRC患者疗效。接下来这种三联疗法将在随机多中心SWOG-2107试验中进行,以进一步验证康奈非尼+西妥昔单抗±纳武利尤单抗联合治疗模式的可靠性。PD-1单抗Spartalizumab(PDR001)+达拉非尼+曲美替尼的II期研究(NCT03668431)正在进行中,该研究纳入了初治和经治的 BRAF V600E突变mCRC患者。纳入的5名MSI,32名MSS患者最新结果显示其ORR为27%(10/37),DCR为70%,PFS为5.5个月[50]。NCT04044430是一项I/II期试验,研究纳武利尤单抗、康奈非尼和比美替尼在MSS、BRAF V600E突变mCRC癌患者的疗效和安全性,研究目前仍在招募阶段。目前,这些正在进行的临床试验,以期通过更好的患者选择和新颖的组合来改善特定亚型患者的预后。

3.4. 其他治疗模式

此外,一些新兴药物的组合模式也在BRAF V600E突变mCRC中展开了研究。Wnt通路或细胞周期蛋白依赖性激酶抑制剂联合BRAF抑制剂等新型组合目前正在I期和II期试验中进行评估。在I期试验(NCT01351103)中,患有BRAF突变的晚期癌症(包括mCRC)的患者在标准治疗失败后,使用特定的PORCN抑制剂(LGK974)和PD-1单抗 PDR001治疗。NCT02278133评估LGK974(WNT974)、LGX818和西妥昔单抗三联组合在BRAF V600E突变mCRC和Wnt通路突变患者中的抗肿瘤活性。此外,靶向MAPK通路的新药的结果也备受关注。例如,专门针对BRAF、C-RAF或ERK的新分子已在临床前模型中显示出安全性和有效性,并且最近开始了I期开发。ERK1/2抑制剂LY3214996目前参与I期试验(NCT02857270),在这项试验中,晚期癌症患者,包括BRAF突变的mCRC,接受LY3214996单独或与其他药物联合治疗。NCT02972034试验中口服ERK 1/2抑制剂MK-8353联合固定剂量帕博利珠单抗的剂量递增阶段Ib研究目前也正在进行中,尚无初步结果。还有一些研究如 (NCT02906059)评估 RAS或BRAF突变的mCRC患者接受伊立替康联合Wee1抑制剂(AZD1775)的二线治疗疗效;NCT01719380评估LGX818(BRAF抑制剂)与西妥昔单抗联合或不联合Alpelisib (BYL719)在BRAF突变mCRC患者的安全性和有效性。我们期待未来更多大样本的研究和更多的药物选择模式为患者带来生存获益。

4. 小结与展望

BRAF-V600E 突变的结直肠癌患者预后差,因此,探索新的治疗策略对于提高这类患者的生存获益非常重要。BEACON研究开创了MAPK通路多重靶向联合治疗BRAFV600E突变mCRC患者的新时代,ANCHOR CRC又将这种理念推到了一线治疗,后续的BREAKWATER研究为一线治疗策略提供进一步的指导。但未来还有更多的问题等待我们的解决,例如哪些患者最有可能从BRAF抑制剂联合EGRF单抗治疗中获益?哪些患者需要在双靶的基础上再联合MEK抑制剂?以及如何对方案排兵布阵,一线治疗之后如何选择治疗方案能更好的延长患者的生存?单纯靶向治疗还是联合免疫治疗也是未来探索的方向。未来的研究还应继续深入了解BRAF V600E 突变在mCRC中的发病机制及后续的耐药机制,为未来优化BRAF V600E突变mCRC患者的个体化治疗方案提供更多依据。

 

参考文献

[1] Sung H, Ferlay J, Siegel R L, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] SEER Cancer of the colon and rectum – cancer stat facts. 2022. [M]. 2022.
[3] Barras D. BRAF Mutation in Colorectal Cancer: An Update. Biomark Cancer, 2015, 7(Suppl 1): 9-12.
[4] Santarpia L, Lippman S M, El-Naggar A K. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets, 2012, 16(1): 103-119.
[5] Sanz-Garcia E, Argiles G, Elez E, Tabernero J. BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. Ann Oncol, 2017, 28(11): 2648-2657.
[6] Gonsalves W I, Mahoney M R, Sargent D J, Nelson G D, Alberts S R, Sinicrope F A, Goldberg R M, Limburg P J, Thibodeau S N, Grothey A, Hubbard J M, Chan E, Nair S, Berenberg J L, Mcwilliams R R. Patient and tumor characteristics and BRAF and KRAS mutations in colon cancer, NCCTG/Alliance N0147. J Natl Cancer Inst, 2014, 106(7).
[7] Clarke C N, Kopetz E S. BRAF mutant colorectal cancer as a distinct subset of colorectal cancer: clinical characteristics, clinical behavior, and response to targeted therapies. J Gastrointest Oncol, 2015, 6(6): 660-667.
[8] Guinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, Bot B M, Morris J S, Simon I M, Gerster S, Fessler E, De Sousa E M F, Missiaglia E, Ramay H, Barras D, Homicsko K, Maru D, Manyam G C, Broom B, Boige V, Perez-Villamil B, Laderas T, Salazar R, Gray J W, Hanahan D, Tabernero J, Bernards R, Friend S H, Laurent-Puig P, Medema J P, Sadanandam A, Wessels L, Delorenzi M, Kopetz S, Vermeulen L, Tejpar S. The consensus molecular subtypes of colorectal cancer. Nat Med, 2015, 21(11): 1350-1356.
[9] Barras D, Missiaglia E, Wirapati P, Sieber O M, Jorissen R N, Love C, Molloy P L, Jones I T, Mclaughlin S, Gibbs P, Guinney J, Simon I M, Roth A D, Bosman F T, Tejpar S, Delorenzi M. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin Cancer Res, 2017, 23(1): 104-115.
[10] Morris V, Overman M J, Jiang Z Q, Garrett C, Agarwal S, Eng C, Kee B, Fogelman D, Dasari A, Wolff R, Maru D, Kopetz S. Progression-free survival remains poor over sequential lines of systemic therapy in patients with BRAF-mutated colorectal cancer. Clin Colorectal Cancer, 2014, 13(3): 164-171.
[11] Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, Lonardi S, Mezi S, Tomasello G, Ronzoni M, Zaniboni A, Tonini G, Carlomagno C, Allegrini G, Chiara S, D'amico M, Granetto C, Cazzaniga M, Boni L, Fontanini G, Falcone A. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol, 2015, 16(13): 1306-1315.
[12] Cremolini C, Antoniotti C, Rossini D, Lonardi S, Loupakis F, Pietrantonio F, Bordonaro R, Latiano T P, Tamburini E, Santini D, Passardi A, Marmorino F, Grande R, Aprile G, Zaniboni A, Murgioni S, Granetto C, Buonadonna A, Moretto R, Corallo S, Cordio S, Antonuzzo L, Tomasello G, Masi G, Ronzoni M, Di Donato S, Carlomagno C, Clavarezza M, Ritorto G, Mambrini A, Roselli M, Cupini S, Mammoliti S, Fenocchio E, Corgna E, Zagonel V, Fontanini G, Ugolini C, Boni L, Falcone A. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol, 2020, 21(4): 497-507.
[13] Cremolini C, Antoniotti C, Stein A, Bendell J C, Gruenberger T, Masi G, Ongaro E, Hurwitz H, Falcone A, Schmoll H-J, Maio M D. FOLFOXIRI/bevacizumab (bev) versus doublets/bev as initial therapy of unresectable metastatic colorectal cancer (mCRC): A meta-analysis of individual patient data (IPD) from five randomized trials. Journal of Clinical Oncology, 2020, 38(15_suppl): 4015-4015.
[14] Modest D P, Martens U M, Riera-Knorrenschild J, Greeve J, Florschütz A, Wessendorf S, Ettrich T, Kanzler S, Nörenberg D, Ricke J, Seidensticker M, Held S, Buechner-Steudel P, Atzpodien J, Heinemann V, Seufferlein T, Tannapfel A, Reinacher-Schick A C, Geissler M. FOLFOXIRI Plus Panitumumab As First-Line Treatment of RAS Wild-Type Metastatic Colorectal Cancer: The Randomized, Open-Label, Phase II VOLFI Study (AIO KRK0109). J Clin Oncol, 2019, 37(35): 3401-3411.
[15] Pietrantonio F, Petrelli F, Coinu A, Di Bartolomeo M, Borgonovo K, Maggi C, Cabiddu M, Iacovelli R, Bossi I, Lonati V. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. European journal of cancer, 2015, 51(5): 587-594.
[16] Rowland A, Dias M, Wiese M, Kichenadasse G, Mckinnon R, Karapetis C, Sorich M. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. British journal of cancer, 2015, 112(12): 1888-1894.
[17] Karapetis C S, Liu H, Sorich M, Fiskum J, Grothey A, Adams R A, Venook A, Heinemann V, Lenz H J, Yoshino T, Zalcberg J R, Chibaudel B, Buyse M E, De Gramont A, Shi Q. 434P Impact of molecular markers status on treatment effects comparing EGFR and VEGF monoclonal antibodies (mAbs) in untreated metastatic colorectal cancer (mCRC): Pooled individual patient data (IPD) analysis of randomized trials from the ARCAD database. Annals of Oncology, 2020, 31: S426.
[18] Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken J H, Aderka D, Aranda Aguilar E, Bardelli A, Benson A, Bodoky G, Ciardiello F, D'hoore A, Diaz-Rubio E, Douillard J Y, Ducreux M, Falcone A, Grothey A, Gruenberger T, Haustermans K, Heinemann V, Hoff P, Kohne C H, Labianca R, Laurent-Puig P, Ma B, Maughan T, Muro K, Normanno N, Osterlund P, Oyen W J, Papamichael D, Pentheroudakis G, Pfeiffer P, Price T J, Punt C, Ricke J, Roth A, Salazar R, Scheithauer W, Schmoll H J, Tabernero J, Taieb J, Tejpar S, Wasan H, Yoshino T, Zaanan A, Arnold D. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol, 2016, 27(8): 1386-1422.
[19] Stintzing S, Heinrich K, Tougeron D, Modest D P, Schwaner I, Eucker J, Pihusch R, Stauch M, Kaiser F, Kahl C, Karthaus M, Müller C, Burkart C, Reinacher-Schick A, Kasper-Virchow S, Fischer Von Weikersthal L, Krammer-Steiner B, Prager G W, Taieb J, Heinemann V. FOLFOXIRI Plus Cetuximab or Bevacizumab as First-Line Treatment of BRAF(V600E)-Mutant Metastatic Colorectal Cancer: The Randomized Phase II FIRE-4.5 (AIO KRK0116) Study. J Clin Oncol, 2023: Jco2201420.
[20] Kopetz S, Desai J, Chan E, Hecht J R, O'dwyer P J, Maru D, Morris V, Janku F, Dasari A, Chung W, Issa J P, Gibbs P, James B, Powis G, Nolop K B, Bhattacharya S, Saltz L. Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAF-Mutated Colorectal Cancer. J Clin Oncol, 2015, 33(34): 4032-4038.
[21] Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen R L, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012, 483(7387): 100-103.
[22] Corcoran R B, Atreya C E, Falchook G S, Kwak E L, Ryan D P, Bendell J C, Hamid O, Messersmith W A, Daud A, Kurzrock R, Pierobon M, Sun P, Cunningham E, Little S, Orford K, Motwani M, Bai Y, Patel K, Venook A P, Kopetz S. Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. J Clin Oncol, 2015, 33(34): 4023-4031.
[23] Hyman D M, Puzanov I, Subbiah V, Faris J E, Chau I, Blay J Y, Wolf J, Raje N S, Diamond E L, Hollebecque A, Gervais R, Elez-Fernandez M E, Italiano A, Hofheinz R D, Hidalgo M, Chan E, Schuler M, Lasserre S F, Makrutzki M, Sirzen F, Veronese M L, Tabernero J, Baselga J. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N Engl J Med, 2015, 373(8): 726-736.
[24] Yaeger R, Cercek A, O'reilly E M, Reidy D L, Kemeny N, Wolinsky T, Capanu M, Gollub M J, Rosen N, Berger M F, Lacouture M E, Vakiani E, Saltz L B. Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res, 2015, 21(6): 1313-1320.
[25] Atreya C E, Van Cutsem E, Bendell J C, Andre T, Schellens J H, Gordon M S, Mcree A J, O'dwyer P J, Muro K, Tabernero J. Updated efficacy of the MEK inhibitor trametinib (T), BRAF inhibitor dabrafenib (D), and anti-EGFR antibody panitumumab (P) in patients (pts) with BRAF V600E mutated (BRAFm) metastatic colorectal cancer (mCRC) [M]. American Society of Clinical Oncology. 2015.
[26] Van Geel R, Tabernero J, Elez E, Bendell J C, Spreafico A, Schuler M, Yoshino T, Delord J P, Yamada Y, Lolkema M P, Faris J E, Eskens F, Sharma S, Yaeger R, Lenz H J, Wainberg Z A, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens J H M. A Phase Ib Dose-Escalation Study of Encorafenib and Cetuximab with or without Alpelisib in Metastatic BRAF-Mutant Colorectal Cancer. Cancer Discov, 2017, 7(6): 610-619.
[27] Tabernero J, Geel R V, Guren T K, Yaeger R D, Spreafico A, Faris J E, Yoshino T, Yamada Y, Kim T W, Bendell J C, Schuler M H, Lenz H-J, Eskens F, Desai J, Hochster H S, Avsar E, Demuth T, Sandor V, Elez E, Schellens J H M. Phase 2 results: Encorafenib (ENCO) and cetuximab (CETUX) with or without alpelisib (ALP) in patients with advanced BRAF-mutant colorectal cancer (BRAFm CRC). Journal of Clinical Oncology, 2016, 34(15_suppl): 3544-3544.
[28] Hong D S, Morris V K, El Osta B, Sorokin A V, Janku F, Fu S, Overman M J, Piha-Paul S, Subbiah V, Kee B, Tsimberidou A M, Fogelman D, Bellido J, Shureiqi I, Huang H, Atkins J, Tarcic G, Sommer N, Lanman R, Meric-Bernstam F, Kopetz S. Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAFV600E Mutation. Cancer Discov, 2016, 6(12): 1352-1365.
[29] Kopetz S, Guthrie K A, Morris V K, Lenz H J, Magliocco A M, Maru D, Yan Y, Lanman R, Manyam G, Hong D S, Sorokin A, Atreya C E, Diaz L A, Allegra C, Raghav K P, Wang S E, Lieu C H, Mcdonough S L, Philip P A, Hochster H S. Randomized Trial of Irinotecan and Cetuximab With or Without Vemurafenib in BRAF-Mutant Metastatic Colorectal Cancer (SWOG S1406). J Clin Oncol, 2021, 39(4): 285-294.
[30] Tabernero J, Yoshino T, Kim T, Yaeger R, Desai J, Wasan H, Van Cutsem E, Ciardiello F, Maughan T, Eng C. LBA26 BREAKWATER safety lead-in (SLI): Encorafenib (E)+ cetuximab (C)+ chemotherapy (chemo) for BRAFV600E metastatic colorectal cancer (mCRC). Annals of Oncology, 2022, 33: S1392-S1393.
[31] Corcoran R B, André T, Atreya C E, Schellens J H M, Yoshino T, Bendell J C, Hollebecque A, Mcree A J, Siena S, Middleton G, Muro K, Gordon M S, Tabernero J, Yaeger R, O'dwyer P J, Humblet Y, De Vos F, Jung A S, Brase J C, Jaeger S, Bettinger S, Mookerjee B, Rangwala F, Van Cutsem E. Combined BRAF, EGFR, and MEK Inhibition in Patients with BRAF(V600E)-Mutant Colorectal Cancer. Cancer Discov, 2018, 8(4): 428-443.
[32] Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T, Desai J, Ciardiello F, Loupakis F, Hong Y S, Steeghs N, Guren T K, Arkenau H T, Garcia-Alfonso P, Elez E, Gollerkeri A, Maharry K, Christy-Bittel J, Kopetz S. Encorafenib Plus Cetuximab as a New Standard of Care for Previously Treated BRAF V600E-Mutant Metastatic Colorectal Cancer: Updated Survival Results and Subgroup Analyses from the BEACON Study. J Clin Oncol, 2021, 39(4): 273-284.
[33] Élez E, Ros J, Martini G, Matito J, Villacampa G, Salva F, Baraibar I, Saoudi N, Garcia A, Comas R. LBA-3 Integrated analysis of cell-free DNA (cfDNA) BRAF mutant allele fraction (MAF) and whole exome sequencing in BRAFV600E metastatic colorectal cancer (mCRC) treated with BRAF-antiEGFR+/-MEK inhibitors. Annals of Oncology, 2021, 32: S226-S227.
[34] Boccaccino A, Borelli B, Intini R, Antista M, Bensi M, Rossini D, Passardi A, Tamberi S, Giampieri R, Antonuzzo L, Noto L, Roviello G, Zichi C, Salati M, Puccini A, Noto C, Parisi A, Rihawi K, Persano M, Crespi V, Libertini M, Giordano M, Moretto R, Lonardi S, Cremolini C. Encorafenib plus cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: real-life data from an Italian multicenter experience. ESMO Open, 2022, 7(3): 100506.
[35] Takashima A, Kotani D, Kato T, Satoh T, Masuishi T, Komatsu Y, Shiozawa M, Esaki T, Izawa N, Takeuchi S. Safety and efficacy of encorafenib, binimetinib, plus cetuximab for BRAF V600E-mutant metastatic colorectal cancer: Results of a prospective study as an expanded access program [M]. American Society of Clinical Oncology. 2022.
[36] Sunakawa Y, Sakamoto Y, Inoue E. ANCHOR CRC: a single-arm, Phase 2 study of encorafenib, binimetinib plus cetuximab in previously untreated BRAF V600E-mutant metastatic colorectal cancer. Ann Oncol, 2020, 31: S242-S243.
[37] Venderbosch S, Nagtegaal I D, Maughan T S, Smith C G, Cheadle J P, Fisher D, Kaplan R, Quirke P, Seymour M T, Richman S D, Meijer G A, Ylstra B, Heideman D A, De Haan A F, Punt C J, Koopman M. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res, 2014, 20(20): 5322-5330.
[38] Rosenbaum M W, Bledsoe J R, Morales-Oyarvide V, Huynh T G, Mino-Kenudson M. PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod Pathol, 2016, 29(9): 1104-1112.
[39] Sinicrope F A, Okamoto K, Kasi P M, Kawakami H. Molecular Biomarkers in the Personalized Treatment of Colorectal Cancer. Clin Gastroenterol Hepatol, 2016, 14(5): 651-658.
[40] Le D T, Kim T W, Van Cutsem E, Geva R, Jäger D, Hara H, Burge M, O'neil B, Kavan P, Yoshino T, Guimbaud R, Taniguchi H, Elez E, Al-Batran S E, Boland P M, Crocenzi T, Atreya C E, Cui Y, Dai T, Marinello P, Diaz L A, Jr., André T. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J Clin Oncol, 2020, 38(1): 11-19.
[41] Diaz L A, Jr., Shiu K K, Kim T W, Jensen B V, Jensen L H, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, De La Fourchardiere C, Rivera F, Elez E, Le D T, Yoshino T, Zhong W Y, Fogelman D, Marinello P, Andre T. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol, 2022, 23(5): 659-670.
[42] Overman M J, Lonardi S, Wong K Y M, Lenz H J, Gelsomino F, Aglietta M, Morse M A, Van Cutsem E, Mcdermott R, Hill A, Sawyer M B, Hendlisz A, Neyns B, Svrcek M, Moss R A, Ledeine J M, Cao Z A, Kamble S, Kopetz S, André T. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol, 2018, 36(8): 773-779.
[43] Lenz H J, Van Cutsem E, Luisa Limon M, Wong K Y M, Hendlisz A, Aglietta M, García-Alfonso P, Neyns B, Luppi G, Cardin D B, Dragovich T, Shah U, Abdullaev S, Gricar J, Ledeine J M, Overman M J, Lonardi S. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J Clin Oncol, 2022, 40(2): 161-170.
[44] André T, Van Cutsem E, Elez E, Bennouna J, De La Fouchardière C, Yoshino T, Jensen L, Mendez G, Li J, Goekkurt E. P-12 A phase 3 study of nivolumab (NIVO), NIVO+ ipilimumab (IPI), or chemotherapy for microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) metastatic colorectal cancer (mCRC): CheckMate 8HW. Annals of Oncology, 2022, 33: S250.
[45] Food U, Administration D. FDA approves pembrolizumab for first-line treatment of MSI-H/dMMR colorectal cancer [M]. 2020.
[46] Kopetz S, Bekaii-Saab T S, Yoshino T, Chung C-H, Zhang X, Tabernero J. SEAMARK: Randomized phase 2 study of pembrolizumab + encorafenib + cetuximab versus pembrolizumab alone for first-line treatment of BRAF V600E-mutant and microsatellite instability-high (MSI-H)/mismatch repair deficient (dMMR) metastatic colorectal cancer (CRC). Journal of Clinical Oncology, 2022, 40(16_suppl): TPS3634-TPS3634.
[47] Morris V K, Parseghian C M, Escano M, Johnson B, Raghav K P S, Dasari A, Huey R, Overman M J, Willis J, Lee M S, Wolff R A, Kee B K, Shen J P Y C, Morelli M P, Tam A, Foo W C, Xiao L, Kopetz S. Phase I/II trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, BRAFV600E metastatic colorectal cancer. Journal of Clinical Oncology, 2022, 40(4_suppl): 12-12.
[48] Russo M, Crisafulli G, Sogari A, Reilly N M, Arena S, Lamba S, Bartolini A, Amodio V, Magrì A, Novara L, Sarotto I, Nagel Z D, Piett C G, Amatu A, Sartore-Bianchi A, Siena S, Bertotti A, Trusolino L, Corigliano M, Gherardi M, Lagomarsino M C, Di Nicolantonio F, Bardelli A. Adaptive mutability of colorectal cancers in response to targeted therapies. Science, 2019, 366(6472): 1473-1480.
[49] Wilmott J S, Long G V, Howle J R, Haydu L E, Sharma R N, Thompson J F, Kefford R F, Hersey P, Scolyer R A. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res, 2012, 18(5): 1386-1394.
[50] Corcoran R, Tian J, Chen J, Chao S, Pelka K, Baiev I, Sindurakar P, Allen J, Meyerhardt J, Enzinger A. SO-38 Clinical efficacy and single-cell analysis of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal cancer patients. Annals of Oncology, 2022, 33: S373.