中南大学湘雅医院 肿瘤科
肿瘤学博士,曾赴耶鲁大学医学院学习交流。
专注于消化道肿瘤,特别是肠癌与肝癌等临床研究以及基础研究,主要的研究方向为肿瘤免疫微环境、免疫治疗、靶向治疗等机制相关探索以及临床新药或新治疗策略临床试验。
以第一作者/通讯作者在EBiomedicine, Molecular Therapy(2篇,其中一篇为Feature Article以及ESI高被引), Journal of Infection, iScience等国际期刊发表SCI论文12篇,其中IF>10分5篇,个人H-index: 15。
研究成果被国际指南、WHO检索数据库收录。
担任多个高水平杂志特邀审稿人,如:Emerging Microbes & Infections,Seminars In Cancer Biology,British Journal Of Cancer等10余个杂志特邀审稿人。
担任iMETA青年编委、Frontiers in Genetics 客座编辑、Frontiers in Oncology 审稿编辑,中国普外外科杂志青年编委。
主持中南大学校级课题2项,大学生创新课题(国家级)2项。作为指导老师指导湖南省大学生创新课题1项。
曾获湖南省医学技能创新创业大赛一等奖。
摘要
结直肠癌(CRC)是一种具有较大疾病负担的恶性肿瘤。免疫疗法对错配修复基因缺陷(dMMR)/微卫星不稳定性高(MSI-H)患者疗效显著,但是免疫疗法对错配修复基因正常(pMMR)/微卫星稳定(MSS)/微卫星不稳定性低(MSI-L)的患者疗效甚微。免疫联合疗法是目前最有希望的策略。然而,免疫联合疗法在结直肠癌中的挑战和潜在应用尚未确定。在这篇综述中,我们总结了结直肠癌免疫联合疗法在临床实践中的应用情况,这些联合疗法包括双重免疫检查点抑制、化疗、靶向治疗、放疗和其他有前景的治疗方法。此外,我们还讨论了联合治疗后肿瘤免疫微环境的重塑。我们的目标是解读临床和基础研究中有效的免疫联合治疗方式,为临床实践提供指导,为开发新药靶点或增强免疫治疗的疗效提供新的方向,使结直肠癌患者更好的获益。
1.前言
就发病率而言,结直肠癌是第三大最常见的癌症,占所有癌症死亡人数的近10%[1,2]。与非转移性疾病患者相比,约25%的结直肠癌患者在诊断时已发生转移,预后较差[3]。根据突变模式,结直肠癌患者分为两种分子类型:MSI-H/dMMR和MSI-L/MSS/pMMR[4,5]。结直肠癌的主流治疗措施包括手术、化疗、放疗和生物治疗及其联合治疗[6]。尽管有多种治疗选择,但结直肠癌的预后仍不尽如人意[7]。免疫检查点抑制剂(ICI)作为一种新兴的治疗方法,在一些 MSI-H/dMMR 结直肠癌患者中显示出巨大的疗效[8-13],但KEYNOTE-177的最终分析发现派姆单抗组和化疗组之间的总生存期没有显著差异[14]。此外,MSI-H/dMMR 结直肠癌仅占转移性结直肠癌 (mCRC)患者的5%[15,16],并且免疫检查点抑制剂单药治疗在大多数MSI-L/MSS/pMMR 结直肠癌患者中显示出有限的效果[17]。因此,寻找结直肠癌的最佳治疗方法仍然是一个重要的课题。
肿瘤微环境(TME)在肿瘤发生、发展、侵袭和对治疗(尤其是免疫治疗)的反应中起着重要作用[18,19]。在不同的肿瘤类型中,肿瘤微环境是多种多样的。然而,肿瘤微环境主要由免疫细胞、基质细胞、血管和细胞外基质(ECM)组成[20]。一方面,肿瘤微环境的抗肿瘤成分包括细胞毒性T细胞(CD8+ T细胞)、T辅助1(Th-1)细胞、B细胞、自然杀伤(NK)细胞和M1巨噬细胞。另一方面,肿瘤微环境的促肿瘤成分包括调节性T细胞(Tregs)、调节性B细胞(Bregs)、M2巨噬细胞、癌症相关成纤维细胞(CAF)和异常血管生成[20-22]。在结直肠癌中,CD8+耗竭T细胞的比例很高,这与结直肠癌患者的不良预后相关[23]。原发性或转移性结直肠癌患者的预后通常与细胞毒性T细胞的浸润程度相关[24,25]。同样,肿瘤微环境中癌症相关成纤维细胞(CAF)的积累也与结直肠癌患者的不良预后有关[26]。此外,肿瘤相关巨噬细胞(TAM)和髓源性抑制细胞(MDSC)被认为会导致免疫抑制性肿瘤微环境[27,28]。血管生成对于肿瘤生长和转移至关重要,血液转移是肿瘤转移到其他器官的最常见途径之一[29,30]。细胞外基质由许多蛋白质组成,例如蛋白多糖、胶原蛋白和层粘连蛋白,它们为细胞提供结构支持,调节细胞信号传导并最终形成细胞的功能外壳[31,32]。因此,联合疗法或许可以通过重塑肿瘤微环境来增强免疫疗法的疗效。然而,免疫联合治疗中结直肠癌的肿瘤微环境全景尚未明确。
在这篇综述中,我们从临床实践和肿瘤免疫微环境的角度讨论了结直肠癌的联合免疫疗法,以期望解决关键问题。我们回顾结直肠癌免疫治疗(主要是免疫检查点抑制剂)的临床试验,重点是与免疫检查点抑制剂的联合治疗,包括双免疫检查点抑制、化疗、靶向治疗、放疗等有前景的治疗。然后,我们通过回顾所有相关研究,包括基础研究和转化研究结果,讨论了与免疫检查点抑制剂联合治疗后结直肠癌中的肿瘤微环境全景。我们从临床到基础研究的角度解释了结直肠癌免疫治疗最有效的联合策略。
2. 双免疫检查点抑制
CheckMate 142在dMMR/MSI-H 转移性结直肠癌患者中测试了纳武单抗与伊匹单抗的联合治疗方案[33]。在中位随访13.4个月时,119名患者中有55%(95% CI,45.2-63.8)的患者达到研究者评估的ORR,80%的患者的疾病控制时间≥12周。9个月和12个月的无进展生存率分别为76%和71%;相应的总生存期率分别为87%和85%。与纳武单抗单药治疗间接比较,这种联合治疗具有更好的疗效。纳武单抗加伊匹单抗在12个月时表现出高反应率、改善的无进展生存期和总生存期,并为dMMR/MSI-H 转移性结直肠癌患者提供了一种有用的新治疗选择。CheckMate 142研究的另一篇论文最近报道了在一线治疗环境中对dMMR/MSI-H 转移性结直肠癌患者使用纳武单抗加低剂量伊匹单抗的结果[34]。客观缓解率和疾病控制率分别为69%(95% CI,53-82)和84%(95% CI,70.5-93.5),完全缓解率为13%。24个月的中位无进展生存期和总生存期率分别为74%和79%。这些结果证明了纳武单抗联合低剂量伊匹单抗具有强大而持续的临床益处,可作为dMMR/MSI-H 转移性结直肠癌患者的一线治疗。一项验证临床试验正在进行中(NCT04008030)。
在新辅助治疗中,进行了新辅助tremelimumab(抗CTLA-4)和durvalumab(抗PD-L1)治疗可切除pMMR 结直肠癌肝转移的试验性临床试验[35]。中位无复发生存期(RFS)和总生存期分别为9.7(95% CI,8.1 -17.8)个月和24.5(95% CI,16.5 -28.4)个月。5/23(22% [95% CI,10% -44%])和2/17(12% [95% CI,2%-38%])的患者分别发生了3/4级的治疗相关免疫毒性和手术后的3/4级毒性,这验证了pMMR结直肠癌肝切除术前tremelimumab和durvalumab新辅助联合治疗的安全性。此外,探索性NICHE研究(NCT03026140)进一步表明,新辅助免疫疗法可能有能力成为特定结肠癌患者群体的标准治疗[9]。在一项随机2期临床研究 (NCT02870920)中,联合使用tremelimumab(抗CTLA-4)和durvalumab(抗PD-L1)治疗难治性转移性结直肠癌患者[36]。在MSS患者中,与单独使用最佳支持治疗(BSC)相比,tremelimumab联合durvalumab显著改善了总生存期(HR,0.66;90% CI,0.49-0.89;P = 0.02)。微卫星状态为MSS且血浆肿瘤突变负荷(TMB)≥28个变异/兆碱基的患者拥有最佳总生存期获益(HR,0.34;90% CI,0.18-0.63;P=0.004)。这些研究结果表明,免疫检查点抑制剂联合durvalumab加tremelimumab治疗可能与MSS 晚期难治性转移性结直肠癌患者的总生存期延长相关,血浆TMB可用于选择从durvalumab和tremelimumab联合治疗中获益更多的患者。
3.与化疗联合
3.1 联合化疗(无论MMR或MSI状态如何)
临床前试验表明,化疗可以促进免疫疗法的有效性[37,38]。在pembrolizumab联合化疗(包括吉西他滨、多西他赛、nab-紫杉醇、长春瑞滨、伊立替康和脂质体多柔比星)的1b期研究中,获得的结果表明pembrolizumab可以安全地与化疗联合使用于除结直肠癌之外的多种晚期肿瘤[39]。为了验证pembrolizumab加化疗在结直肠癌中的疗效,一项多中心、单臂、1b 期研究研究了pembrolizumab (MK-3475)联合改良FOLFOX(氟尿嘧啶、亚叶酸和奥沙利铂;mFOLFOX)方案治疗转移性结直肠癌患者[40]。中位无进展生存期为8.8个月,数据截止时未达到中位总生存期;疾病稳定、部分缓解和完全缓解的最大缓解率分别为43.3%、50.0%和6.7%。这些数据表明,pembrolizumab加mFOLFOX6可以安全地联合用于转移性结直肠癌患者。然而,该研究的主要目标(即 中位无进展生存期)并不优于历史上的同类研究[13,40,41]。更令人遗憾的是,只有一小部分患者具有有关其dMMR/MSI状态的可用统计数据[40]。
抗PD-L1药物(atezolizumab)加VEGF阻断剂(贝伐珠单抗)在MSI-high 转移性结直肠癌中的第一个临床研究报告了有效性,并且没有意外毒性[42]。关于FOLFOX联合贝伐珠单抗和阿特珠单抗的可靠安全数据可以从一个1b期临床试验中获得[43]。基于这些发现,研究者开展了一项多中心、开放标签、随机对照的2期临床研究(AtezoTRIBE),以确定将抗PD-L1药物atezolizumab添加到一线FOLFOXIRI联合贝伐珠单抗中是否对患有不可切除的转移性结直肠癌患者有益处[44]。患者分为两组:对照组(一线FOLFOXIRI加贝伐珠单抗)和阿特珠单抗组(相同策略加阿特珠单抗)。atezolizumab组的中位无进展生存期为13.1个月(80% CI,12.5-13.8),而其对应组为11.5个月(80% CI,10.0-12.6)(风险比 [HR] = 0.69 [80% CI,0.56-0.85 ], p = 0.012;调整后的HR = 0.70 [80% CI, 0.57-0.87],对数秩检验p = 0.018),这表明atezolizumab联合一线FOLFOXIRI加贝伐珠单抗可提高先前未治疗的转移性结直肠癌患者的无进展生存期。然而,pMMR/MSS状态在该试验中未分层[44,45]。鉴于将atezolizumab与氟嘧啶和贝伐珠单抗联合作为BRAFwt 转移性结直肠癌 患者的一线维持治疗并未显著改善结果[46],使用更有效的化疗来增强免疫检查点抑制剂的抗肿瘤作用是一个可行的选择[44]。
在TRIBE 3期临床试验中,在转移性结直肠癌和BRAF突变的转移性结直肠癌的一线治疗中,FOLOXIRI加贝伐珠单抗的无进展生存期优于FOLOXIRI加贝伐珠单抗[47,48]。因此,一项多中心、前瞻性、开放标签的2期临床研究旨在研究三联化疗(FOLFOXIRI)联合贝伐珠单抗和纳武单抗治疗具有RAS或BRAF突变的转移性结直肠癌患者(无论微卫星状态如何)[49],此方案良好的耐受性在招募的前10名患者的安全分析中被确认[50]。
3.2 在pMMR/MSS 结直肠癌中联合化疗
在pMMR/MSS 结直肠癌异种移植小鼠模型的临床前研究中,曲氟尿苷/替吡嘧啶(FTD/TPI,也称为TAS-102)加上PD1阻断剂显示出协同抗癌功能和增强的癌症免疫原性[51]。因此,研究者发起了一项单臂2期研究以评估FTD/TPI加纳武单抗在MSS 转移性结直肠癌患者中的疗效,但没有患者达到了疗效反应(根据实体瘤反应评估标准[RECIST]或免疫相关反应标准[irRC])[52]。在另一项单臂2期研究中,在化疗难治性pMMR/MSS 转移性结直肠癌中研究了帕博利珠单抗联合氮杂胞苷(DNA甲基转移酶抑制剂[DNMTi]),然而ORR为3%,中位无进展生存期和中位总生存期分别为1.9个月和6. 3个月[53]。同样,由于疗效不佳,与原计划相比,这两项研究都提前终止了[52,53]。看来两种药物的联合治疗并没有取得满意的效果。因此,一些研究寻求三种药物的联合治疗。
令人遗憾但也有意义的是,在一项主要包括89.4%(110/133)的pMMR/MSS难治性转移性结直肠癌患者的双盲、2期随机临床试验中,评估了卡培他滨和贝伐珠单抗联合或不联合阿替利珠单抗 [54]。中位无进展生存期分别为4.4个月(95% CI,4.1-6.4)和3.6个月(95% CI,2.2-6.2)(单侧对数秩检验:P = 0.07;HR=0.75;95% CI,0.52-1.09)。在pMMR/MSS患者中,观察到9例缓解,无进展生存期的HR为0.66(95% CI,0.44-0.99)。无肝转移的患者比有肝转移的患者从atezolizumab中获益更多(无进展生存期的初步分析:HR=0.63 [95% CI,0.27-1.47] vs 0.77 [95% CI,0.51-1.17];总生存期:HR=0.33 [ 95% CI,0.11-1.02] vs 1.14 [95% CI,0.72-1.81])。虽然atezolizumab对卡培他滨和贝伐珠单抗治疗患者仅提供了有限的临床获益,但这种组合策略为pMMR/MSS患者和没有肝转移的患者带了了更好的疗效。
替莫唑胺(TMZ)是一种口服烷基化药物,被批准用于治疗具有O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)启动子甲基化的胶质母细胞瘤患者[55]。然而,单药TMZ仅在MGMT甲基化转移性结直肠癌 患者中产生中度的疗效,ORR为10%[56]。为了进一步了解TMZ在结直肠癌中的作用,研究者设计了一项多中心、单臂2期试验(MAYA试验)以评估免疫增敏策略,先用TMZ启动治疗,然后联合使用低剂量伊匹单抗和纳武单抗治疗具有微卫星稳定(MSS)和MGMT沉默的转移性结直肠癌患者[57]。令人惊讶的是,根据试验设计,8个月的无进展生存期率和ORR分别为36%和45%; 中位无进展生存期和总生存期分别为7.0个月和18.4个月。这些结果提供的证据表明,TMZ启动后联合低剂量伊匹木单抗和纳武单抗治疗,可能为MSS和MGMT沉默的转移性结直肠癌的带来持久临床有效性。为了在临床上进一步验证,研究人员进一步设计了ARETHUSA临床试验,其中MGMT缺陷、pMMR 和RAS突变的转移性结直肠癌患者接受了TMZ启动治疗,并且在TMZ启动治疗后接受pembrolizumab治疗[58]。在治疗的6名患者中有4名疗效评估为稳定。
3.3 化疗对肿瘤微环境的影响
5-氟尿嘧啶(5-FU)导致肿瘤中MDSC数量的大幅减少,并且随着CD8+ T细胞浸润肿瘤而增加IFN-γ的产生,并增强荷瘤小鼠的T细胞依赖性抗肿瘤反应[59]。奥沙利铂可刺激凋亡前钙网蛋白(CRT)暴露并触发高迁移率族蛋白1 (HMGB1)的凋亡后释放,从而引发结直肠癌细胞的免疫原性细胞死亡(ICD)[60,61]。此外,它还可以促进DC成熟并改善DC的功能,从而导致共培养时T细胞的增殖增加[62]。此外,它还可以使DC和肿瘤细胞上的T细胞抑制分子(程序性死亡受体配体 2 (PD-L2))下调,从而增强抗原特异性增殖、Th1细胞因子释放和T细胞对肿瘤细胞的识别[63]。 此外,它还可以增加CD8+/Treg细胞比率并减少MDSC,从而导致肿瘤微环境向更具促免疫原性的表型转变[64]。伊立替康,也称为CPT-11,是一种拓扑异构酶1抑制剂,通过抑制DNA酶引发细胞死亡,产生细胞毒性蛋白连接的DNA断裂[65]。
5-FU和伊立替康都可以上调所有结肠癌细胞系表面的EGFR,并显著增强西妥昔单抗介导的ADCC(无论K-RAS状态如何)[66]。伊立替康+L-亚叶酸+5-氟尿嘧啶(FOLFIRI)可以增加结肠癌抗原的表达[67]。此外,当与西妥昔单抗联合使用时,这种化疗方案可以提高结肠癌对人类DC吞噬作用的易感性并促进DC的活化,最终引发强烈的细胞毒性T淋巴细胞(CTL)抗癌反应[67]。
除了由此导致的免疫原性细胞死亡(ICD)和肿瘤抗原的释放,FOLFOX还可以减少免疫抑制性T调节细胞(Treg)和髓源性抑制细胞(MDSC)的数量[68-70];当与贝伐珠单抗联合使用时,它还可以增加Th17细胞的数量[71]。派姆单抗联合mFOLFOX可显著增加CXCL10的水平[40],这与结直肠癌患者的不良预后有关[72]。一致地,降低的CXCL10与改善的RECIST反应相关[40]。此外,检测到循环颗粒酶B的显著增加,这可能反映了T细胞介导的抗肿瘤免疫力的增加[40]。
FTD/TPI是一种用于治疗化疗难治性转移性结直肠癌的新型抗代谢药物,可在多种MSS 结直肠癌细胞系中诱导ICD[73,74]。FTD/TPI与奥沙利铂联合使用时,可以促进ICD,同时减少2型肿瘤相关巨噬细胞(TAM2),导致细胞毒性CD8+ T细胞浸润和活化增加[73]。 与之前的试验相反,FTD/TPI在与抗PD-L1联合使用时没有产生明显的协同抗肿瘤作用,这可能解释了临床研究中疗效不佳的现象[51,52,73]。
阿扎胞苷可以减少DNA甲基化,然后使以前沉默的基因重新表达,包括肿瘤相关抗原(TAA)[53,75,76]。 氮胞苷和免疫检查点抑制剂的联合治疗显著提高了治疗效果,并治愈了80%以上的CT26 pMMR 结直肠癌荷瘤小鼠,这可归因于对髓源性抑制细胞(MDSC)的抑制[77]。此外,用PD-1阻断剂和地西他滨联合治疗小鼠CT26 结直肠癌肿瘤可增加瘤内CD3+、CD4+和CD8+ T细胞[78]。因此,在接受阿扎胞苷加帕博利珠单抗治疗的MSS 结直肠癌患者中,与治疗前相比,观察到更高的CD8+ TIL密度[53]。
TMZ可引起DNA损伤,可被MGMT修复;然而,如果MGMT沉默,TMZ将导致MGMT沉默的转移性结直肠癌超突变[54]。对组织活检和循环肿瘤DNA (ctDNA)的深入分析显示,94% (16/17)的患者存在MSH6突变[56]。这种突变会导致dMMR,从而增加肿瘤突变负荷(TMB)和对免疫检查点抑制剂的敏感性[12,55,56]。(图1)
图1. 化疗对结直肠癌肿瘤免疫微环境的影响
4. 联合靶向治疗
4.1 抗表皮生长因子受体(EGFR)
RAS基因突变发生在约50-55%的转移性结直肠癌中,其状态是预测抗EGFR抗体(如西妥昔单抗和帕尼单抗)在转移性结直肠癌中治疗效果的唯一方法[46,79]。在一项单臂、多中心2期临床试验(CAVE试验)中,西妥昔单抗再激发疗法加avelumab的疗效和安全性在化疗难治性RAS野生型(WT) 转移性结直肠癌患者(92% (71/77)的是MSS)中进行了评估[80]。中位总生存期 (mOS)为11.6个月(95% CI,8.4-14.8),中位无进展生存期(mPFS)为3.6个月(95% CI,3.2-4.1)。皮疹(14%,[11/77])和腹泻(4%,[3/77])是最常见的3级不良事件。这些发现表明,西妥昔单抗加avelumab是RAS WT 转移性结直肠癌的一种有效且安全的再激发疗法,进一步的研究表明,皮肤毒性和基线中性粒细胞与淋巴细胞比值(NLR)<3与改善的生存率显著相关[80-82]。更有趣的是,西妥昔单抗还用于修饰与IRDye800CW和MRI造影剂DOTA-Gd偶联的含卟啉脂质体纳米杂化陶瓷体,以在结直肠癌小鼠研究中实现体内肿瘤成像和光动力疗法(PDT),其中西妥昔单抗充当引导系统[83]。同时,给予抗PD-L1药物进行辅助治疗。最后,结果表明,EGFR靶向的PDT联合抗PD-L1免疫疗法比同时使用激光照射和抗PD-L1免疫疗法的非靶向纳米颗粒递送更有效地抑制癌症生长。术前治疗中有许多癌症纳米药物可以实现免疫治疗[84],但我们希望其中一些将在结直肠癌临床试验中进行测试并用于临床。
4.2 抗血管内皮生长因子/血管内皮生长因子受体(抗VEGF/VEGFR)
瑞戈非尼(REG)是一种血管生成和其他激酶抑制剂,通常用于结直肠癌患者的三线治疗[85]。 在小鼠结直肠癌研究中,REG和抗PD-1抗体的组合抑制了同基因的小鼠微卫星稳定(MSS) CT26和超突变MC38结肠癌模型中的肿瘤再生[86,87]。 在一项1/1b期临床研究中,在pMRR 转移性结直肠癌中评估了REG加纳武单抗的有效性[88]。10%(4/40)的患者达到了部分缓解,52.5%(21/40)的患者达到了病情稳定,疾病控制率为63%。中位无进展生存期和总生存期分别为4.3个月和11.1个月。 这些发现表明,尽管REG加纳武单抗在pMRR 转移性结直肠癌中的抗癌疗效有限,但似乎耐受性良好。在另一项1b期临床试验 (REGONIVO) 中,REG加纳武单抗具有可控的安全性和令人鼓舞的抗肿瘤活性,晚期结直肠癌患者的客观肿瘤反应率为36% (9/25),中位无进展生存期为7.9个月 (96% [24/25] MSS/pMRR)[89]。在这项研究之后,对MSS 结直肠癌患者实施了相同的组合,但结果令人失望[90]。 同样,乐伐替尼联合派姆单抗治疗pMMR 结直肠癌的II期研究显示ORR为22%[91]。此外,一项单臂2期研究表明,未发生肝转移的pMRR 转移性结直肠癌患者可能会从REG和纳武单抗的联合治疗中获益更多[92]。目前,pembrolizumab加乐伐替尼的3期研究(NCT04776148)正在进行中,我们预计该试验将使我们更好地了解pMMR 结直肠癌中的多激酶抑制剂的作用。
此外,还有一项1b期临床研究探讨了ziv-aflibercept(靶向VEGF)与pembrolizumab联合治疗晚期实体瘤(包括MSS 结直肠癌)患者的疗效,但结直肠癌的中位总生存期仅为3.3个月(90%CI,0.6-3.4)[93]。
4.3 丝裂原活化蛋白激酶(MAPK)激酶(MEK)抑制
丝裂原活化蛋白激酶(MAPK)激酶(MEK)抑制剂单药治疗在临床试验中未对结直肠癌产生反应[94]。 然而,临床前试验表明,将MEK抑制剂与免疫检查点抑制剂联合使用可在结直肠癌中产生协同和持久的抗癌活性[95-97]。因此,研究人员开展了一项1b期,旨在研究cobimetinib(MEK抑制剂)加atezolizumab在实体瘤(包括转移性结直肠癌)患者中的安全性和治疗活性,结果表明,cobimetinib联合atezolizumab有着良好的安全性和临床活性(不考虑KRAS/ BRAF突变状态)[98]。另一项1期临床研究也报告了在MSS KRAS突变体转移性结直肠癌中使用相同联合方案的缓解率为20%[99]。然而,在一项旨在评估考比替尼联合阿特珠单抗治疗MSS 转移性结直肠癌的多中心、开放标签、3期随机对照试验(IMblaze370)中,结果显示阿特珠单抗联合考比替尼的中位总生存期为8.87个月(95% CI,7.00-10.61),atezolizumab为7.10个月(95% CI,6.05-10.05),regorafenib为8.51个月 (95% CI,6.41-10.71)(风险比:联合治疗比regorafenib 单药治疗:1.00 [95% CI,0.73-1.38; p=0.99];atezolizumab比regorafenib:1.19 [0.83-1.71; p =0.34]),与单独的regorafenib或atezolizumab 相比,未达到改善总生存期的主要终目标[100]。
同样,在针对MSS 转移性结直肠癌103名患者的2期临床研究的第一阶段,durvalumab与trametinib的联合治疗未达到其有效的标准。值得注意的是,在三名同时患有肺和肝转移的患者中,肺转移而非肝转移观察到了临床获益,这意味着不同部位的转移疾病可能会影响治疗结果[101]。 这种差异可能是由肝脏巨噬细胞介导的T细胞缺失引起的,并且研究者建议采用肝脏定向放射治疗和免疫治疗相结合的治疗方式[102]。
4.4 靶向治疗对肿瘤微环境的影响
多项临床前研究表明,西妥昔单抗能够诱导抗体依赖性细胞介导的细胞毒性作用(ADCC)[103-105],NK细胞可借此杀死肿瘤细胞。西妥昔单抗可以促进NK细胞和DC细胞之间的功能通讯;通过DC改善癌细胞的调理作用;增加肿瘤微环境中MHC-II分子的表达和T细胞的浸润[80,106]。西妥昔单抗联合avelumab的耐受性和可行性结果部分归因于它们具有ADCC诱导特征的共同IgG1同型结构[80]。然而,同样靶向EGFR的帕尼单抗不能有效地产生涉及NK细胞的ADCC,将T细胞募集到肿瘤,并启动依赖于树突细胞成熟的T细胞[107]。实际上,帕尼单抗通过中性粒细胞驱动的ADCC和单核细胞引发一定程度的免疫刺激功能[108,109]。此外,西妥昔单抗和帕尼单抗均可抑制血管生成[103,109,110]。
抗血管生成疗法和免疫检查点抑制剂的联合治疗使血管免疫相互作用正常化,从而提高抗癌能力[111]。首先,异常的肿瘤血管阻碍了CD8+ T细胞进入肿瘤微环境,使其效应功能失活甚至死亡[112,113]。 其次,上调的VEGF水平抑制DC成熟,从而抑制T细胞的活化,并且VEGF还诱导转录因子TOX介导的CD8+ T细胞耗竭[113,114]。第三,几种免疫抑制细胞(例如M2型巨噬细胞、TH2细胞和Treg细胞)可以分泌促血管生成因子,包括血管生成素-2(ANGPT-2)和转化生长因子-β(TGF-β)和胎盘生长因子(PlGF),促进异常血管生成[115-117],这反过来又加剧了CD8+ T细胞的功能障碍。最后,肿瘤血管可以通过分泌趋化因子,如CCL2、CCL22、CCL28、CXCL8和 CXCL12,将免疫抑制细胞募集到肿瘤微环境中[118,119]。此外,抗血管生成疗法可以缓解缺氧,促进药物输送并提高其他疗法的疗效[120]。因此,通过靶向血管生成剂,如贝伐珠单抗,我们可以使肿瘤血管结构正常化,从而增加T细胞浸润和DC分化,并减少免疫抑制细胞 [111,121,122]。有趣的是,较低的抗VEGF受体2 (VEGFR2)抗体剂量导致功能性肿瘤血管的分布更加正常[123]。此外,较低剂量更有效地将肿瘤相关巨噬细胞(TAM)从M2表型极化为M1表型,并促进CD4+和CD8+ T细胞的肿瘤浸润[123]。然而,同样靶向血管生成的多激酶抑制剂索拉非尼通过抑制PI3K、MAPK和 NFκ-B信号转导来抑制DC功能,这可能是其在组合方案中疗效有限的原因之一[88,124]。
MEK抑制通过改善效应CD8+ T细胞浸润、减少CD8+ T细胞耗竭和促进CD8+ T细胞活化来改变肿瘤微环境[95,125]。Cobimetinib是一种MEK1和MEK2抑制剂,可阻断MAP激酶通路,在细胞周期调节中必不可少,并影响肿瘤微环境中的免疫结构[100]。Cobimetinib联合PD-L1抑制剂可增加肿瘤上的主要组织相容性复合体1(MHC-1)表达和效应CD8+细胞浸润到肿瘤中,并下调多种免疫抑制细胞因子和受体,从而在结直肠癌临床前模型中产生有利的抗癌免疫力[95]。 然而atezolizumab加cobimetinib的组合并没有取得更好的疗效,这可能是因为替代机制绕过MSS 转移性结直肠癌中MEK抑制剂对MAPK通路的抑制[100]。在CT26模型中将曲美替尼与靶向PD-1、PD-L1 或CTLA-4的抗体联合使用比它们的单一药物更有效,尤其是当与抗PD-1抗体联合使用时增加了肿瘤浸润性CD8+ T细胞 [96]。值得注意的是,曲美替尼治疗后曲美替尼加抗PD-1抗体联合治疗比抗PD-1治疗后曲美替尼加抗PD-1抗体治疗更具活性[96]。这说明治疗顺序可能很重要。此外,MEK抑制使CD8+ T细胞重新编程为干细胞样记忆(TSCM) CD8+ T细胞,作为效应T细胞的储存库,具有强大的治疗能力[125]。(图2)
图2. 靶向治疗对结直肠癌肿瘤免疫微环境的影响
5. 与放疗相结合
5.1 临床研究进展
在小鼠模型中,抗PD-L1治疗提高了电离辐射的有效性[126]。此外,一项1期临床研究表明,在转移性实体瘤患者中,多部位立体定向放疗(SBRT)后给予帕博利珠单抗治疗是安全的,且毒性可接受[127]。基于这些发现,在pMMR/MSS 转移性结直肠癌患者中启动了durvalumab和tremelimumab联合放疗的2期单臂临床研究[128]。ORR为8.3% (2/24) [95% CI,1.0-27.0]。中位无进展生存期和中位总生存期分别为1.8(95% CI,1.7-1.9)个月和11.4(95% CI,10.1-17.4)个月。25%的患者(6/24)有治疗相关的3-4级不良事件。这些结果表明,尽管这种联合治疗没有达到其预定义的终点标准,但是durvalumab和tremelimumab联合放疗具有潜在的有效性和安全性,因此值得进一步研究。此外,两项临床研究描述了RT加免疫检查点抑制剂可导致MSS 转移性结直肠癌患者中未受照射的远处肿瘤缩小[129,130]。
在一项单臂、非随机、2期临床试验中,研究人员联合放疗、伊匹单抗和纳武单抗治疗转移性MSS 结直肠癌患者,这也显示了放疗与免疫检查点抑制剂联合治疗的安全性和有效性[131]。此外,该试验发现,疾病控制的患者在治疗前活检样本中具有更高数量的自然杀伤(NK)细胞和HERVK重复RNA表达。
5.2 放疗对肿瘤微环境的影响
放疗可以上调几种免疫效应物和癌症-睾丸抗原,并同时下调肉瘤中的几种免疫抑制因子[132]。辐射会增加胞质双链DNA的积累,从而激活cGAS-STING通路和下游免疫反应,例如干扰素-β的分泌[133]。局部高剂量放疗已被证明可增加瘤内Ⅰ型INF的产生,从而启动对肿瘤的级联先天性和适应性免疫反应,特别是通过提高肿瘤浸润树突状细胞(TIDC)的交叉启动能力[134]。在免疫检查点封锁的情况下,DC的募集和激活对于CD8+ T细胞的启动至关重要[135]。放疗还可以单独或与卡铂或紫杉醇联合诱导剂量依赖性ICD,这有助于肿瘤周围的促免疫原性环境[136]。此外,局部辐射可以增加抗肿瘤免疫效应细胞的数量和它们进入肿瘤的数量[137]。消融性放疗明显增加引流淋巴组织中CD8+ T细胞的启动,从而减少/根除原发肿瘤或远处转移,局部免疫疗法可以大大加强这种效果[138]。在小鼠中,电离辐射和抗PD-L1通过 TNF的细胞毒性作用共同削弱了肿瘤浸润性骨髓来源抑制细胞(MDSC)的积累[126]。 辐射、抗 CTLA4和抗PD-L1的联合通过塑造扩增的外周克隆的TCR表位、抑制T调节细胞(Treg细胞)和促进T细胞的扩增,以及逆转T细胞耗竭并促进单克隆T细胞扩增来促进抗肿瘤反应和抗肿瘤免疫力[139]。(图3)
图3. 放疗对结直肠癌肿瘤免疫微环境的影响
6. 其他有前景的联合免疫疗法可选策略
6.1 新型免疫检查点抑制剂
T细胞免疫球蛋白和粘蛋白结构域3(TIM3;也称为HAVCR2)是一种细胞表面磷脂酰丝氨酸受体,其配体刺激TIM3导致Th1细胞死亡,这说明TIM3在Th1反应中具有负调节作用 [140,141]。抗TIM3单独显示治疗活性,抗TIM3与抗CTLA-4和抗-PD-1的联合研究表明,当在临床前模型中联合使用时,这些药物在致癌物诱发的肿瘤中可能是安全且非常有效的[142]。
淋巴细胞激活基因3 (LAG3)在其氨基酸序列和遗传结构组织方面是CD4同系物,标记调节性T细胞群并促进其抑制活性[143,144]。抗LAG3或Lag3基因敲除改善了肿瘤内CD8+T细胞的聚集和效应功能。更显著的是,在临床前模型中,LAG3的抗体与抗肿瘤疫苗联合使用可增加肿瘤中活化的CD8+T细胞数量,破坏肿瘤实质[145]。 此外,CD4+和CD8+ T细胞上的低水平LAG3与改善的RECIST反应相关,CD8+细胞上的低水平LAG3也与改善的中位无进展生存期显著相关[40]。LAG3在MSI-H 结直肠癌中过表达,阻断LAG3可改善结直肠癌肝转移中细胞毒性T细胞的浸润和活性[146,147]。现在,LAG3抑制剂relatlimab联合纳武单抗治疗MSS 结直肠癌患者的研究(NCT03642067)正在进行中。
T细胞免疫球蛋白和基于免疫受体酪氨酸的抑制基序结构域(TIGIT)分别在T细胞和NK细胞上表达,通过刺激成熟免疫调节树突状细胞的产生来抑制T细胞活化,并通过与CD155和CD112的相互作用来抑制NK细胞的细胞毒性作用[148,149]。值得注意的是,抗TIGIT和抗PD-L1协同并特异性地增强了CD8+ T细胞效应功能,从而在临床前模型中显著抑制了肿瘤[150]。 此外,TIGIT与结肠癌患者的NK细胞耗竭有关,阻断TIGIT可在肿瘤再攻击模型中产生持久的记忆免疫力[151]。
一些针对TIM3、LAG3和TIGIT的抗体正在治疗结直肠癌的临床试验中进行研究[152]。总而言之,单独或与其他治疗方案联合靶向这些新的T细胞免疫检查点是一种很有前途的结直肠癌治疗策略。
6.2 KRAS(G12C)抑制剂
约50%的转移性结直肠癌患者存在KRAS突变,3%的结直肠癌患者存在KRAS (G12C)突变[153,154]。在临床前研究中,KRAS (G12C)抑制剂显示出有希望的抗肿瘤活性[155-157]。令人兴奋的是,第一个进入临床开发的KRAS (G12C)抑制剂AMG 510可导致KRAS (G12C)肿瘤消退,提高化疗和靶向药物的抗肿瘤疗效,并在临床前研究中单独或与免疫检查点抑制剂联合治疗时获得了持久疗效,这些作用是通过诱导促炎性肿瘤微环境(增加T细胞浸润和活化,增强抗原识别和T细胞记忆)实现的[158]
此外,在临床试验中,AMG 510在肺癌患者的首批给药队列中显示出抗肿瘤能力,并为没有有效治疗方式的患者提供了可能的革命性方法[158]。因此,将AMG 510添加到现有的组合治疗策略中或将免疫检查点抑制剂与AMG 510组合也可能是转移性结直肠癌中有前途的策略。
6.3 转化生长因子(TGF)-β通路抑制剂
转化生长因子(TGF)-β通过诱导T细胞耗竭导致抑制性抗肿瘤免疫[159]。在功能研究中,TGF-β通路抑制减少了肿瘤细胞的数量[160]。相应地,使用TGF-β信号通路抑制剂阻断肿瘤细胞与肿瘤微环境之间的相互作用阻碍了肿瘤的发展[160]。在携带MSS 结直肠癌的小鼠中,阻断TGF-β信号通路使肿瘤对抗PD-1或抗PD-L1疗法敏感,并对肿瘤细胞产生强烈而持久的细胞毒性T细胞反应,这阻断了肿瘤细胞的转移;这些作用是通过避免T细胞耗竭和促进Th1效应表型的获得而实现的[161]。同样,在转移性尿路上皮癌中,TGF-β阻断抗体和抗PD-L1抗体的共同给药降低了TGF-β水平,促进了T细胞浸润,并激发了强烈的抗肿瘤免疫力[162]。 因此,联合抗PD-1/抗PD-L1抗体和抗TGF-β抗体可能有益于治疗转移性结直肠癌患者。
6.4 靶向巨噬细胞的促肿瘤作用
肿瘤相关巨噬细胞(TAM)在原发肿瘤和肿瘤转移的整个过程中发挥促肿瘤作用,在癌症治疗中,靶向其促肿瘤作用是联合治疗的一个有吸引力的靶点[163]。例如,在接受含贝伐珠单抗化疗的转移性结直肠癌患者中,调节TAM相关功能的基因变异与临床结果显著相关[164]。TAM表达诱发免疫检查点蛋白分子的表达,以TAM为重点的治疗策略有能力与免疫疗法合作[165]。 MABp1是一种靶向TAM促肿瘤功能的抗体,有望在临床试验中开辟治疗晚期结直肠癌的新方法[166,167]。
7. 结论
双重免疫检查点抑制具有足够安全性,并且可能对pMMR/MSS 结直肠癌具有好的疗效。此外,将双重免疫检查点抑制剂(伊匹单抗和纳武单抗)与烷化药物替莫唑胺相结合可能会在MSS和MGMT沉默的转移性结直肠癌中产生持久的临床获益。同样,伊匹单抗和纳武单抗联合抗EGFR抗体帕尼单抗或放疗在MSS 转移性结直肠癌中显示出抗肿瘤活性。此外,双重免疫检查点抑制剂(durvalumab和tremelimumab)联合放疗在这一特定人群中也显示出安全性。
单用免疫检查点抑制剂联合化疗或靶向治疗策略,对pMMR/MSS 结直肠癌患者获益不大。然而,卡培他滨和贝伐珠单抗联合阿替利珠单抗对无肝转移的患者比有肝转移的患者获益更多。有趣的是,这也在纳武单抗加REG组合方案中观察到。这两项临床试验表明,与肝转移患者相比,未发生肝转移的患者可能会从联合免疫疗法中获得更多的治疗获益。此外,当durvaluma与trametinib联合使用时,3例同时发生肺和肝转移的患者表现出肺转移的临床获益,但肝转移没有临床获益,表明不同的转移部位可能会影响治疗效果。基于这些发现,我们可以得出结论,确定适合联合免疫疗法策略的特定患者非常重要。更重要的是,探索特定的生物标志物或它们的联合指标来预测疗效是未来的趋势。
关于免疫联合治疗对肿瘤微环境影响的机制,我们可以观察到不同的组合对结直肠癌肿瘤微环境的重塑方式不同,这可以作为支持联合免疫疗法的证据。此外,我们可以根据肿瘤微环境状态筛选联合免疫治疗患者的优势人群,通过重塑机制开发生物标志物。最后,这些机制可以为我们设计新靶点以提高免疫检查点抑制剂的疗效和设计免疫联合治疗的新策略提供许多线索。总之,未来的主要研究方向是增加抗肿瘤免疫微环境成分,同时减少促肿瘤免疫微环境成分。研究人员可以专注于增加CTL浸润、巨噬细胞中M1型巨噬细胞的比例、DC细胞成熟度和抗肿瘤细胞因子分泌,同时减少Tregs、Bregs和CAFs的数量。值得注意的是,减少肿瘤微环境中的异常血管生成也至关重要。我们需要对结直肠癌患者进行更准确的分类,并将免疫抑制性肿瘤微环境转化为免疫敏感性肿瘤微环境。
[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Siegel R L, Miller K D, Fuchs H E, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33.
[3] Van Cutsem E, Oliveira J, Group E G W. Advanced colorectal cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up[J]. Ann Oncol, 2009, 20 Suppl 4: 61-3.
[4] Vilar E, Gruber S B. Microsatellite instability in colorectal cancer-the stable evidence[J]. Nat Rev Clin Oncol, 2010, 7(3): 153-62.
[5] Boland C R, Goel A. Microsatellite instability in colorectal cancer[J]. Gastroenterology, 2010, 138(6): 2073-2087 e3.
[6] Brenner H, Kloor M, Pox C P. Colorectal cancer[J]. Lancet, 2014, 383(9927): 1490-1502.
[7] Dekker E, Tanis P J, Vleugels J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207): 1467-1480.
[8] Andre T, Amonkar M, Norquist J M, et al. Health-related quality of life in patients with microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer treated with first-line pembrolizumab versus chemotherapy (KEYNOTE-177): an open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2021, 22(5): 665-677.
[9] Chalabi M, Fanchi L F, Dijkstra K K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576.
[10] Andre T, Shiu K K, Kim T W, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218.
[11] Overman M J, Mcdermott R, Leach J L, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191.
[12] Le D T, Durham J N, Smith K N, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413.
[13] Le D T, Uram J N, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015, 372(26): 2509-20.
[14] Diaz L A, Jr., Shiu K K, Kim T W, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2022, 23(5): 659-670.
[15] Nordholm-Carstensen A, Krarup P M, Morton D, et al. Mismatch repair status and synchronous metastases in colorectal cancer: A nationwide cohort study[J]. Int J Cancer, 2015, 137(9): 2139-48.
[16] Venderbosch S, Nagtegaal I D, Maughan T S, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies[J]. Clin Cancer Res, 2014, 20(20): 5322-30.
[17] Ciardiello D, Vitiello P P, Cardone C, et al. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy[J]. Cancer Treat Rev, 2019, 76: 22-32.
[18] Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221: 107753.
[19] Gallo G, Vescio G, De Paola G, et al. Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer[J]. J Clin Med, 2021, 10(11).
[20] Anderson N M, Simon M C. The tumor microenvironment[J]. Curr Biol, 2020, 30(16): R921-R925.
[21] Qi J, Sun H, Zhang Y, et al. Single-cell and spatial analysis reveal interaction of FAP(+) fibroblasts and SPP1(+) macrophages in colorectal cancer[J]. Nat Commun, 2022, 13(1): 1742.
[22] Li S, Mirlekar B, Johnson B M, et al. STING-induced regulatory B cells compromise NK function in cancer immunity[J]. Nature, 2022, 610(7931): 373-380.
[23] Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272.
[24] Nosho K, Baba Y, Tanaka N, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review[J]. J Pathol, 2010, 222(4): 350-66.
[25] Katz S C, Pillarisetty V, Bamboat Z M, et al. T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases[J]. Ann Surg Oncol, 2009, 16(9): 2524-30.
[26] Musa M, Ali A. Cancer-associated fibroblasts of colorectal cancer and their markers: updates, challenges and translational outlook[J]. Future Oncol, 2020, 16(29): 2329-2344.
[27] Nguyen K B, Spranger S. Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling[J]. J Cell Biol, 2020, 219(1).
[28] Hinshaw D C, Shevde L A. The Tumor Microenvironment Innately Modulates Cancer Progression[J]. Cancer Res, 2019, 79(18): 4557-4566.
[29] Guo Y, Guo Y, Chen C, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis[J]. Mol Cancer, 2021, 20(1): 93.
[30] Brown M, Assen F P, Leithner A, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice[J]. Science, 2018, 359(6382): 1408-1411.
[31] Kim M S, Ha S E, Wu M, et al. Extracellular Matrix Biomarkers in Colorectal Cancer[J]. Int J Mol Sci, 2021, 22(17).
[32] Karamanos N K. Extracellular matrix: key structural and functional meshwork in health and disease[J]. FEBS J, 2019, 286(15): 2826-2829.
[33] Overman M J, Lonardi S, Wong K Y M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer[J]. J Clin Oncol, 2018, 36(8): 773-779.
[34] Lenz H J, Van Cutsem E, Luisa Limon M, et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study[J]. J Clin Oncol, 2022, 40(2): 161-170.
[35] Kanikarla Marie P, Haymaker C, Parra E R, et al. Pilot Clinical Trial of Perioperative Durvalumab and Tremelimumab in the Treatment of Resectable Colorectal Cancer Liver Metastases[J]. Clin Cancer Res, 2021, 27(11): 3039-3049.
[36] Chen E X, Jonker D J, Loree J M, et al. Effect of Combined Immune Checkpoint Inhibition vs Best Supportive Care Alone in Patients With Advanced Colorectal Cancer: The Canadian Cancer Trials Group CO.26 Study[J]. JAMA Oncol, 2020, 6(6): 831-838.
[37] Pfirschke C, Engblom C, Rickelt S, et al. Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy[J]. Immunity, 2016, 44(2): 343-54.
[38] Galluzzi L, Buque A, Kepp O, et al. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents[J]. Cancer Cell, 2015, 28(6): 690-714.
[39] Weiss G J, Waypa J, Blaydorn L, et al. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus)[J]. Br J Cancer, 2017, 117(1): 33-40.
[40] Herting C J, Farren M R, Tong Y, et al. A multi-center, single-arm, phase Ib study of pembrolizumab (MK-3475) in combination with chemotherapy for patients with advanced colorectal cancer: HCRN GI14-186[J]. Cancer Immunol Immunother, 2021, 70(11): 3337-3348.
[41] De Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer[J]. J Clin Oncol, 2000, 18(16): 2938-47.
[42] Hochster H S, Bendell J C, Cleary J M, et al. Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC)[J]. J Clin Oncol, 2017, 35(4_suppl): 673-673.
[43] Wallin J, Pishvaian M J, Hernandez G, et al. Abstract 2651: Clinical activity and immune correlates from a phase Ib study evaluating atezolizumab (anti-PDL1) in combination with FOLFOX and bevacizumab (anti-VEGF) in metastatic colorectal carcinoma[J]. Cancer Res, 2016, 76(14_Supplement): 2651-2651.
[44] Antoniotti C, Rossini D, Pietrantonio F, et al. Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. The Lancet Oncology, 2022, 23(7): 876-887.
[45] Antoniotti C, Borelli B, Rossini D, et al. AtezoTRIBE: a randomised phase II study of FOLFOXIRI plus bevacizumab alone or in combination with atezolizumab as initial therapy for patients with unresectable metastatic colorectal cancer[J]. BMC Cancer, 2020, 20(1): 683.
[46] Grothey A, Tabernero J, Arnold D, et al. Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL – a multicentre, randomized trial of biomarker-driven maintenance treatment following first-line induction therapy[J]. Ann Oncol, 2018, 29: viii714-viii715.
[47] Cremolini C, Loupakis F, Antoniotti C, et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study[J]. The Lancet Oncology, 2015, 16(13): 1306-1315.
[48] Loupakis F, Cremolini C, Masi G, et al. Initial Therapy with FOLFOXIRI and Bevacizumab for Metastatic Colorectal Cancer[J]. N Engl J Med, 2014, 371(17): 1609-1618.
[49] Damato A, Iachetta F, Antonuzzo L, et al. Phase II study on first-line treatment of NIVolumab in combination with folfoxiri/bevacizumab in patients with Advanced COloRectal cancer RAS or BRAF mutated - NIVACOR trial (GOIRC-03-2018)[J]. BMC Cancer, 2020, 20(1): 822.
[50] Damato A, Bergamo F, Antonuzzo L, et al. FOLFOXIRI/Bevacizumab Plus Nivolumab as First-Line Treatment in Metastatic Colorectal Cancer RAS/BRAF Mutated: Safety Run-In of Phase II NIVACOR Trial[J]. Front Oncol, 2021, 11: 766500.
[51] Suzuki N, Tsukihara H, Nakagawa F, et al. Synergistic anticancer activity of a novel oral chemotherapeutic agent containing trifluridine and tipiracil in combination with anti-PD-1 blockade in microsatellite stable-type murine colorectal cancer cells[J]. Am J Cancer Res, 2017, 7(10): 2032-2040.
[52] Patel M R, Falchook G S, Hamada K, et al. A phase 2 trial of trifluridine/tipiracil plus nivolumab in patients with heavily pretreated microsatellite-stable metastatic colorectal cancer[J]. Cancer Med, 2021, 10(4): 1183-1190.
[53] Kuang C, Park Y, Augustin R C, et al. Pembrolizumab plus azacitidine in patients with chemotherapy refractory metastatic colorectal cancer: a single-arm phase 2 trial and correlative biomarker analysis[J]. Clin Epigenetics, 2022, 14(1): 3.
[54] Mettu N B, Ou F S, Zemla T J, et al. Assessment of Capecitabine and Bevacizumab With or Without Atezolizumab for the Treatment of Refractory Metastatic Colorectal Cancer: A Randomized Clinical Trial[J]. JAMA Netw Open, 2022, 5(2): e2149040.
[55] Hegi M E, Diserens A C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352(10): 997-1003.
[56] Calegari M A, Inno A, Monterisi S, et al. A phase 2 study of temozolomide in pretreated metastatic colorectal cancer with MGMT promoter methylation[J]. Br J Cancer, 2017, 116(10): 1279-1286.
[57] Morano F, Raimondi A, Pagani F, et al. Temozolomide Followed by Combination With Low-Dose Ipilimumab and Nivolumab in Patients With Microsatellite-Stable, O(6)-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: The MAYA Trial[J]. J Clin Oncol, 2022, 40(14): 1562-1573.
[58] Crisafulli G, Sartore-Bianchi A, Lazzari L, et al. Temozolomide Treatment Alters Mismatch Repair and Boosts Mutational Burden in Tumor and Blood of Colorectal Cancer Patients[J]. Cancer Discov, 2022, 12(7): 1656-1675.
[59] Vincent J, Mignot G, Chalmin F, et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res, 2010, 70(8): 3052-61.
[60] Tesniere A, Schlemmer F, Boige V, et al. Immunogenic death of colon cancer cells treated with oxaliplatin[J]. Oncogene, 2010, 29(4): 482-91.
[61] Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy[J]. Nat Med, 2007, 13(9): 1050-9.
[62] Liu W M, Fowler D W, Smith P, et al. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses[J]. Br J Cancer, 2010, 102(1): 115-23.
[63] Lesterhuis W J, Punt C J, Hato S V, et al. Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice[J]. J Clin Invest, 2011, 121(8): 3100-8.
[64] Gonzalez-Aparicio M, Alzuguren P, Mauleon I, et al. Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice[J]. Gut, 2011, 60(3): 341-9.
[65] Bailly C. Irinotecan: 25 years of cancer treatment[J]. Pharmacol Res, 2019, 148: 104398.
[66] Correale P, Marra M, Remondo C, et al. Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC)[J]. Eur J Cancer, 2010, 46(9): 1703-11.
[67] Correale P, Botta C, Cusi M G, et al. Cetuximab +/- chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro[J]. Int J Cancer, 2012, 130(7): 1577-89.
[68] Galluzzi L, Buque A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease[J]. Nat Rev Immunol, 2017, 17(2): 97-111.
[69] Meirow Y, Kanterman J, Baniyash M. Paving the Road to Tumor Development and Spreading: Myeloid-Derived Suppressor Cells are Ruling the Fate[J]. Front Immunol, 2015, 6: 523.
[70] Kanterman J, Sade-Feldman M, Biton M, et al. Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes[J]. Cancer Res, 2014, 74(21): 6022-35.
[71] Limagne E, Euvrard R, Thibaudin M, et al. Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX-Bevacizumab Drug Treatment Regimen[J]. Cancer Res, 2016, 76(18): 5241-52.
[72] Toiyama Y, Fujikawa H, Kawamura M, et al. Evaluation of CXCL10 as a novel serum marker for predicting liver metastasis and prognosis in colorectal cancer[J]. Int J Oncol, 2012, 40(2): 560-6.
[73] Limagne E, Thibaudin M, Nuttin L, et al. Trifluridine/Tipiracil plus Oxaliplatin Improves PD-1 Blockade in Colorectal Cancer by Inducing Immunogenic Cell Death and Depleting Macrophages[J]. Cancer Immunol Res, 2019, 7(12): 1958-1969.
[74] Mayer R J, Van Cutsem E, Falcone A, et al. Randomized trial of TAS-102 for refractory metastatic colorectal cancer[J]. N Engl J Med, 2015, 372(20): 1909-19.
[75] Jones P A, Ohtani H, Chakravarthy A, et al. Epigenetic therapy in immune-oncology[J]. Nat Rev Cancer, 2019, 19(3): 151-161.
[76] Chiappinelli K B, Zahnow C A, Ahuja N, et al. Combining Epigenetic and Immunotherapy to Combat Cancer[J]. Cancer Res, 2016, 76(7): 1683-9.
[77] Kim K, Skora A D, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells[J]. Proc Natl Acad Sci U S A, 2014, 111(32): 11774-9.
[78] Yu G, Wu Y, Wang W, et al. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment[J]. Cell Mol Immunol, 2019, 16(4): 401-409.
[79] Sorich M J, Wiese M D, Rowland A, et al. Extended RAS mutations and anti-EGFR monoclonal antibody survival benefit in metastatic colorectal cancer: a meta-analysis of randomized, controlled trials[J]. Ann Oncol, 2015, 26(1): 13-21.
[80] Martinelli E, Martini G, Famiglietti V, et al. Cetuximab Rechallenge Plus Avelumab in Pretreated Patients With RAS Wild-type Metastatic Colorectal Cancer: The Phase 2 Single-Arm Clinical CAVE Trial[J]. JAMA Oncol, 2021, 7(10): 1529-1535.
[81] Ciardiello D, Famiglietti V, Napolitano S, et al. Final results of the CAVE trial in RAS wild type metastatic colorectal cancer patients treated with cetuximab plus avelumab as rechallenge therapy: Neutrophil to lymphocyte ratio predicts survival[J]. Clin Colorectal Cancer, 2022, 21(2): 141-148.
[82] Ciardiello D, Famiglietti V, Napolitano S, et al. Skin Toxicity as Predictor of Survival in Refractory Patients with RAS Wild-Type Metastatic Colorectal Cancer Treated with Cetuximab and Avelumab (CAVE) as Rechallenge Strategy[J]. Cancers (Basel), 2021, 13(22).
[83] Li Y, Du Y, Liang X, et al. EGFR-targeted liposomal nanohybrid cerasomes: theranostic function and immune checkpoint inhibition in a mouse model of colorectal cancer[J]. Nanoscale, 2018, 10(35): 16738-16749.
[84] Qu X, Zhou D, Lu J, et al. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy[J]. Bioact Mater, 2023, 24: 136-152.
[85] Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial[J]. Lancet, 2013, 381(9863): 303-12.
[86] Doleschel D, Hoff S, Koletnik S, et al. Regorafenib enhances anti-PD1 immunotherapy efficacy in murine colorectal cancers and their combination prevents tumor regrowth[J]. J Exp Clin Cancer Res, 2021, 40(1): 288.
[87] Hoff S, Grunewald S, Rose L, et al. Immunomodulation by regorafenib alone and in combination with anti PD1 antibody on murine models of colorectal cancer[J]. Ann Oncol, 2017, 28.
[88] Kim R D, Kovari B P, Martinez M, et al. A phase I/Ib study of regorafenib and nivolumab in mismatch repair proficient advanced refractory colorectal cancer[J]. Eur J Cancer, 2022, 169: 93-102.
[89] Fukuoka S, Hara H, Takahashi N, et al. Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061.
[90] Kim R, Imanirad I, Strosberg J, et al. PD-2 Final result of phase IB study of regorafenib and nivolumab in mismatch repair proficient advanced refractory colorectal cancer[J]. Ann Oncol, 2021, 32.
[91] Gomez-Roca C, Yanez E, Im S A, et al. LEAP-005: A phase II multicohort study of lenvatinib plus pembrolizumab in patients with previously treated selected solid tumors-Results from the colorectal cancer cohort[J]. J Clin Oncol, 2021, 39(3).
[92] Fakih M, Raghav K P S, Chang D Z, et al. Single-arm, phase 2 study of regorafenib plus nivolumab in patients with mismatch repair-proficient (pMMR)/microsatellite stable (MSS) colorectal cancer (CRC)[J]. J Clin Oncol, 2021, 39(15_suppl): 3560-3560.
[93] Rahma O E, Tyan K, Giobbie-Hurder A, et al. Phase IB study of ziv-aflibercept plus pembrolizumab in patients with advanced solid tumors[J]. J Immunother Cancer, 2022, 10(3).
[94] Rosen L S, Lorusso P, Ma W W, et al. A first-in-human phase I study to evaluate the MEK1/2 inhibitor, cobimetinib, administered daily in patients with advanced solid tumors[J]. Invest New Drugs, 2016, 34(5): 604-13.
[95] Ebert P J R, Cheung J, Yang Y, et al. MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity in Combination with PD-L1 Checkpoint Blockade[J]. Immunity, 2016, 44(3): 609-621.
[96] Liu L, Mayes P A, Eastman S, et al. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on Immune Function and in Combination with Immunomodulatory Antibodies Targeting PD-1, PD-L1, and CTLA-4[J]. Clin Cancer Res, 2015, 21(7): 1639-51.
[97] Castle J C, Loewer M, Boegel S, et al. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma[J]. BMC Genomics, 2014, 15: 190.
[98] Hellmann M D, Kim T W, Lee C B, et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors[J]. Ann Oncol, 2019, 30(7): 1134-1142.
[99] Bendell J C, Kim T W, Goh B C, et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC).[J]. J Clin Oncol, 2016, 34(15).
[100] Eng C, Kim T W, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial[J]. The Lancet Oncology, 2019, 20(6): 849-861.
[101] Johnson B, Haymaker C L, Parra E R, et al. Phase II study of durvalumab (anti-PD-L1) and trametinib (MEKi) in microsatellite stable (MSS) metastatic colorectal cancer (mCRC)[J]. J Immunother Cancer, 2022, 10(8).
[102] Yu J, Green M D, Li S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination[J]. Nat Med, 2021, 27(1): 152-164.
[103] Kurai J, Chikumi H, Hashimoto K, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines[J]. Clin Cancer Res, 2007, 13(5): 1552-61.
[104] Kimura H, Sakai K, Arao T, et al. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor[J]. Cancer Sci, 2007, 98(8): 1275-80.
[105] Kawaguchi Y, Kono K, Mimura K, et al. Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma[J]. Int J Cancer, 2007, 120(4): 781-7.
[106] Inoue Y, Hazama S, Suzuki N, et al. Cetuximab strongly enhances immune cell infiltration into liver metastatic sites in colorectal cancer[J]. Cancer Sci, 2017, 108(3): 455-460.
[107] Garcia-Foncillas J, Sunakawa Y, Aderka D, et al. Distinguishing Features of Cetuximab and Panitumumab in Colorectal Cancer and Other Solid Tumors[J]. Front Oncol, 2019, 9: 849.
[108] Trivedi S, Srivastava R M, Concha-Benavente F, et al. Anti-EGFR Targeted Monoclonal Antibody Isotype Influences Antitumor Cellular Immunity in Head and Neck Cancer Patients[J]. Clin Cancer Res, 2016, 22(21): 5229-5237.
[109] Shim H. One target, different effects: a comparison of distinct therapeutic antibodies against the same targets[J]. Exp Mol Med, 2011, 43(10): 539-49.
[110] Kim G P, Grothey A. Targeting colorectal cancer with human anti-EGFR monoclonocal antibodies: focus on panitumumab[J]. Biologics, 2008, 2(2): 223-8.
[111] Lee W S, Yang H, Chon H J, et al. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity[J]. Exp Mol Med, 2020, 52(9): 1475-1485.
[112] Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities[J]. Cell Mol Life Sci, 2020, 77(9): 1745-1770.
[113] Motz G T, Santoro S P, Wang L P, et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors[J]. Nat Med, 2014, 20(6): 607-15.
[114] Gabrilovich D I, Chen H L, Girgis K R, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells[J]. Nat Med, 1996, 2(10): 1096-103.
[115] Gerald D, Chintharlapalli S, Augustin H G, et al. Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy[J]. Cancer Res, 2013, 73(6): 1649-57.
[116] De Falco S. The discovery of placenta growth factor and its biological activity[J]. Exp Mol Med, 2012, 44(1): 1-9.
[117] Goumans M J, Liu Z, Ten Dijke P. TGF-beta signaling in vascular biology and dysfunction[J]. Cell Res, 2009, 19(1): 116-27.
[118] Huang Y, Kim B Y S, Chan C K, et al. Improving immune-vascular crosstalk for cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18(3): 195-203.
[119] Fukumura D, Kloepper J, Amoozgar Z, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges[J]. Nat Rev Clin Oncol, 2018, 15(5): 325-340.
[120] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005, 307(5706): 58-62.
[121] Rahma O E, Hodi F S. The Intersection between Tumor Angiogenesis and Immune Suppression[J]. Clin Cancer Res, 2019, 25(18): 5449-5457.
[122] Osada T, Chong G, Tansik R, et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients[J]. Cancer Immunol Immunother, 2008, 57(8): 1115-24.
[123] Huang Y, Yuan J, Righi E, et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J]. Proc Natl Acad Sci U S A, 2012, 109(43): 17561-6.
[124] Hipp M M, Hilf N, Walter S, et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses[J]. Blood, 2008, 111(12): 5610-20.
[125] Verma V, Jafarzadeh N, Boi S, et al. MEK inhibition reprograms CD8(+) T lymphocytes into memory stem cells with potent antitumor effects[J]. Nat Immunol, 2021, 22(1): 53-66.
[126] Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice[J]. J Clin Invest, 2014, 124(2): 687-95.
[127] Luke J J, Lemons J M, Karrison T G, et al. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients With Advanced Solid Tumors[J]. J Clin Oncol, 2018, 36(16): 1611-1618.
[128] Segal N H, Cercek A, Ku G, et al. Phase II Single-arm Study of Durvalumab and Tremelimumab with Concurrent Radiotherapy in Patients with Mismatch Repair-proficient Metastatic Colorectal Cancer[J]. Clin Cancer Res, 2021, 27(8): 2200-2208.
[129] Aparna Raj Parikh J W C, Jennifer Yon-Li Wo, Beow Y Yeap, Jill N. Allen, Lawrence Scott Blaszkowsky, David P. Ryan, Bruce J. Giantonio, Colin D. Weekes, Andrew X. Zhu, Emily E. Van Seventer, Lauren Matlack, Bronwen Foreman, Leilana Ly, Lorraine C. Drapek, David Tsai Ting, Ryan Bruce Corcoran, Theodore S. Hong. A phase II study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC)[J]. Journal of Clinical Oncology, 2019, 37(15).
[130] Neil Howard Segal N E K, Andrea Cercek, Diane Lauren Reidy, Pamela Joan Raasch, Peter Warren, Anastasia E. Hrabovsky, Naomi Campbell, Jinru Shia, Karyn A. Goodman, Joseph Patrick Erinjeri, Stephen Barnett Solomon, Yoshiya Yamada, Leonard Saltz. Non-randomized phase II study to assess the efficacy of pembrolizumab (Pem) plus radiotherapy (RT) or ablation in mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) patients.[J]. Journal of Clinical Oncology, 2016, 34(15).
[131] Parikh A R, Szabolcs A, Allen J N, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial[J]. Nat Cancer, 2021, 2(11): 1124-1135.
[132] Sharma A, Bode B, Studer G, et al. Radiotherapy of human sarcoma promotes an intratumoral immune effector signature[J]. Clin Cancer Res, 2013, 19(17): 4843-53.
[133] Guan J, Lu C, Jin Q, et al. MLH1 Deficiency-Triggered DNA Hyperexcision by Exonuclease 1 Activates the cGAS-STING Pathway[J]. Cancer Cell, 2021, 39(1): 109-121 e5.
[134] Burnette B C, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity[J]. Cancer Res, 2011, 71(7): 2488-96.
[135] Vanpouille-Box C, Alard A, Aryankalayil M J, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618.
[136] Golden E B, Frances D, Pellicciotta I, et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death[J]. Oncoimmunology, 2014, 3: e28518.
[137] Lugade A A, Moran J P, Gerber S A, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor[J]. J Immunol, 2005, 174(12): 7516-23.
[138] Lee Y, Auh S L, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment[J]. Blood, 2009, 114(3): 589-95.
[139] Twyman-Saint Victor C, Rech A J, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer[J]. Nature, 2015, 520(7547): 373-7.
[140] Freeman G J, Casasnovas J M, Umetsu D T, et al. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity[J]. Immunol Rev, 2010, 235(1): 172-89.
[141] Zhu C, Anderson A C, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity[J]. Nat Immunol, 2005, 6(12): 1245-52.
[142] Ngiow S F, Von Scheidt B, Akiba H, et al. Anti-TIM3 antibody promotes T cell IFN-gamma-mediated antitumor immunity and suppresses established tumors[J]. Cancer Res, 2011, 71(10): 3540-51.
[143] Huang C T, Workman C J, Flies D, et al. Role of LAG-3 in regulatory T cells[J]. Immunity, 2004, 21(4): 503-13.
[144] Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4[J]. J Exp Med, 1990, 171(5): 1393-405.
[145] Grosso J F, Kelleher C C, Harris T J, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems[J]. J Clin Invest, 2007, 117(11): 3383-92.
[146] Zhou G, Noordam L, Sprengers D, et al. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer[J]. Oncoimmunology, 2018, 7(7): e1448332.
[147] Llosa N J, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1): 43-51.
[148] Yu X, Harden K, Gonzalez L C, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells[J]. Nat Immunol, 2009, 10(1): 48-57.
[149] Stanietsky N, Simic H, Arapovic J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity[J]. Proc Natl Acad Sci U S A, 2009, 106(42): 17858-63.
[150] Johnston R J, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function[J]. Cancer Cell, 2014, 26(6): 923-937.
[151] Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity[J]. Nat Immunol, 2018, 19(7): 723-732.
[152] Anderson A C, Joller N, Kuchroo V K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation[J]. Immunity, 2016, 44(5): 989-1004.
[153] Consortium A P G. AACR Project GENIE: Powering Precision Medicine through an International Consortium[J]. Cancer Discov, 2017, 7(8): 818-831.
[154] Peeters M, Kafatos G, Taylor A, et al. Prevalence of RAS mutations and individual variation patterns among patients with metastatic colorectal cancer: A pooled analysis of randomised controlled trials[J]. Eur J Cancer, 2015, 51(13): 1704-13.
[155] Janes M R, Zhang J, Li L S, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor[J]. Cell, 2018, 172(3): 578-589 e17.
[156] Patricelli M P, Janes M R, Li L S, et al. Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State[J]. Cancer Discov, 2016, 6(3): 316-29.
[157] Ostrem J M, Peters U, Sos M L, et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions[J]. Nature, 2013, 503(7477): 548-51.
[158] Canon J, Rex K, Saiki A Y, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity[J]. Nature, 2019, 575(7781): 217-223.
[159] TGFbeta Promotes Immune Evasion to Limit the Efficacy of Anti-PD-1/PD-L1[J]. Cancer Discov, 2018, 8(4): OF10.
[160] Calon A, Lonardo E, Berenguer-Llergo A, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer[J]. Nat Genet, 2015, 47(4): 320-9.
[161] Tauriello D V F, Palomo-Ponce S, Stork D, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis[J]. Nature, 2018, 554(7693): 538-543.
[162] Mariathasan S, Turley S J, Nickles D, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J]. Nature, 2018, 554(7693): 544-548.
[163] Noy R, Pollard J W. Tumor-associated macrophages: from mechanisms to therapy[J]. Immunity, 2014, 41(1): 49-61.
[164] Sunakawa Y, Stintzing S, Cao S, et al. Variations in genes regulating tumor-associated macrophages (TAMs) to predict outcomes of bevacizumab-based treatment in patients with metastatic colorectal cancer: results from TRIBE and FIRE3 trials[J]. Ann Oncol, 2015, 26(12): 2450-6.
[165] Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14(7): 399-416.
[166] Hickish T, Andre T, Wyrwicz L, et al. MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study[J]. Lancet Oncol, 2017, 18(2): 192-201.
[167] Hong D S, Hui D, Bruera E, et al. MABp1, a first-in-class true human antibody targeting interleukin-1alpha in refractory cancers: an open-label, phase 1 dose-escalation and expansion study[J]. Lancet Oncol, 2014, 15(6): 656-66.