您好,欢迎您

【35under35】杨菊医生:胃癌:HER2之外的靶向之光

2022年07月30日
作者:杨菊
医院:南京大学医学院附属鼓楼医院

   

               
杨菊
主治医师、医学博士

南京大学博士后
美国休斯敦MD Anderson肿瘤中心联合培养博士
华中科技大学同济医学院博士
以第一作者或通讯作者身份发表SCI论文14篇,累计影响因子60.42,其中2020ESI高被引用收录1篇
主持中国博士后科学基金一项,多个SCI期刊审稿人

      随着2010年ToGA数据的发布,胃癌的治疗正式进入了靶向时代,曲妥珠单抗与化疗的联合应用显著改善了HER2阳性患者的预后[1]。针对HER2这个靶点,近些年来在胃癌中又进行了诸多尝试,包括KEYNOTE-811中曲妥珠单抗与免疫检查点的联合应用[2]、一线折戟沉沙的帕妥珠单抗[3]、后线表现优秀的抗体偶联药物DS-8201[4]及RC48[5]、以及匠心设计的margetuximab[6]、Zanidatamab[7]、KN026[8]。虽然国外的文献报道HER2阳性的胃癌患者约20%左右[9],但我国胃癌患者的HER2阳性率仅为10.8%-12.5%[10, 11],笔者回顾性分析了所在中心近3年的胃癌患者,HER2阳性率为11.4%,故抗HER2治疗覆盖人群有限。随着精准医学的发展,越来越多的靶点被发掘,本文对相关的临床数据进行盘点,期待未来能够有更多的病人在更前线接受到精准的靶向治疗。

1. Claudin 18.2

      Claudin家族蛋白是一类存在于上皮和内皮紧密连接中的整合素膜蛋白,由CLDN基因编码,主要功能是通过不同细胞之间的Claudin蛋白多聚体实现紧密连接。Claudin的异常表达可能导致在某些肿瘤中蛋白的定位与功能异常,进而促进肿瘤的侵袭和转移能力[12]。Claudin18在Claudin家族中研究的最为广泛,有两种剪切变体Claudin 18.1及Claudin18.2。Claudin 18.1主要表达于正常及肺癌组织,Claudin 18.2主要表达于正常胃组织及胃癌、胰腺癌、食管癌中[13]。虽然参与了细胞粘附的Claudin 18.2表达下调或缺失后会促进肿瘤的发生和转移,但Claudin 18.2依然可以作为治疗胃癌的靶点,因为在正常胃部组织中Claudin 18.2主要存在于胃粘液细胞紧密连接的超巨分子中,而胃癌组织中Claudin 18.2的表位会暴露出来从而可以与对应抗体结合[12]。日本的一项研究提示Claudin 18.2在胃癌的表达率为51.5%[14],笔者所在中心的既往研究提示在印戒细胞癌中,Claudin 18.2的表达率为64.8%[15]

      目前在胃癌中针对Claudin 18.2的治疗包括单抗、CAR-T、双抗、抗体偶联药物四大类。表1展示了已有数据发布的相关的临床试验设计及结果。IMAB362/zolbetuximab 是第一个靶向Claudin18.2的单抗。在胃癌后线的临床试验中确立了IMAB362的安全性和抗肿瘤能力(NCT00909025、NCT01197885)。II期临床试验FAST(NCT01630083)纳入了≥40%肿瘤细胞中/高表达Claudin18.2的一线胃癌患者,IMAB362联合EOX相较于EOX展现出了无进展生存期(progression-free survival, PFS)和总生存期(overall survival, OS)的优势,尤其是在≥70%肿瘤细胞中/高表达Claudin18.2的患者中尤为突出,但在40%~69%肿瘤细胞中/高表达Claudin18.2的患者中两组OS无差异。该临床试验主要的不良反应包括恶心、呕吐、中性粒细胞减少、贫血等,多为1-2级[16]。2021ASCO报道了II期临床试验ILUSTRO的队列2的研究结果,纳入了21例≥75%肿瘤细胞中/高表达Claudin18.2的一线胃癌患者,评估mFOLFOX联合IMAB362一线治疗的疗效,其中19例可评估,客观缓解率(objective response rate, ORR)为63.2%[17]。IMAB362一线治疗的III期临床试验SPOTLIGHT及GLOW的数据尚未披露。CT041是全球首个针对Claudin18.2的CAR-T细胞治疗,37例受试者中有36例存在靶病灶,31例患者的靶病灶出现不同程度的缩小,根据RECIST 1.1标准,ORR和疾病控制率(disease control rate, DCR)分别达到48.9%(18/37)和73%(27/37)。在既往接受过≥2线治疗的胃癌患者中,18例患者接受2.5×108 CAR-T细胞治疗,约40%患者既往接受过PD-1单抗治疗,中位随访时间为7.6个月,ORR为61.1%,DCR为83.3%,mPFS为5.6个月,mOS 为9.5个月,100%出现≥G3血液毒性,无免疫相关神经毒性,无≥G3细胞因子风暴[18]。靶向Claudin18.2的双抗及ADC的药物尚无相关临床数据发布。

 表1靶向Claudin18.2相关临床试验

1.png

2. DKK1

      DKK1为一种含有266个氨基酸的分泌型蛋白,是一种Wnt信号通路的天然拮抗物,在组织或者血清中均可检测。生理情况下,DKK1在骨、胎盘、前列腺、脾脏、结肠中均有表达[21]。病理情况下,实验室数据分析显示DKK1能够提高肿瘤细胞的增殖与侵袭能力[22];临床数据分析显示DKK1在多种肿瘤比如乳腺癌、食管癌、结肠癌、胃癌、子宫内膜癌中高表达[21],且在头颈鳞癌、肝癌、直肠癌、肺癌、胰腺癌中与不良生物学行为或不佳预后相关[22, 23]。上述实验室及临床研究结果为DKK1成为肿瘤的诊断、预后判断及治疗的新型靶点提供了依据。

      DKN-01是一种人源化的IgG4抗体,可与DKK1结合并阻断其活性,目前已有多项相关临床试验(表2)。DKN-01最开始在非小细胞肺癌及妇科肿瘤的后线治疗中崭露头角(NCT01457417[24]、NCT03395080[25])。在胃/胃食管交界癌的后线治疗中,既往未接受过PD-1/PD-L1抗体治疗且DKK1高表达的患者接受DKN-01+帕博利珠单抗治疗,客观缓解率(objective response rate, ORR)为50%(NCT02013154)[26]。2021年ESMO及2022年的ASCO GI相继报道了DKN-01+替雷利珠+化疗在胃食管腺癌一线治疗中的数据,对于DKK1高表达的患者,在疗效可评估的患者中,ORR高达100%(NCT03395080,DisTinGuish)[27, 28]

表2 DKK1靶向药物DKN-01相关临床试验

2.png

3. FGFR2b

      FGFR2b在多种肿瘤中过表达且与不良预后相关,常存在于肠型的胃癌患者,且与HER2过表达互斥[30],FGFR2b过表达的弥漫型胃癌患者预后极差[31]。Bemarituzumab是靶向FGFR2b的IgG1抗体,在后线FGFR2b阳性的胃癌患者中ORR为18%[32]。2021ASCO报道了Bemarituzumab一线治疗晚期胃癌的II期临床试验(NCT03694522)的相关数据。该项目纳入了FGFR2b过表达(IHC 2+/3+)或FGFR2b扩增晚期胃癌患者,1:1将患者随机分至Bemarituzumab联合mFOLFOX6组与mFOLFOX6组。30%的预筛患者符合FGFR2b表达要求,大部分患者FGFR2b过表达但无FGFR2b扩增。在肿瘤组织≥10% FGFR2b IHC 2+/3+的患者中mPFS长达14.1个月,ORR为54.5%,而mOS尚未达到[33]。 

4. MET

      促癌基因MET编码酪氨酸激酶受体c-MET,c-MET与其配体肝细胞生长因子HGF形成二聚体激活下游ERK/MAPK、PI3K-AKT通路。MET在胃肠肿瘤中扩增率为8%,且与较差预后相关[34],我中心检测的胃癌MET扩增率为4.1%[35]。MET抑制剂的应用是基于MET的扩增或突变,而非过表达。一项开放标签、多中心的Ia/Ib期临床试验评价赛沃替尼后线治疗晚期胃癌,结果提示只有MET扩增的患者疾病能得到缓解,ORR为35.7%,主要的不良反应包括恶心、呕吐及外周水肿[36]。针对MET基因扩增的后线胃癌患者,II期临床研究正在进行中。

结语

      胃癌无论是发病率还是死亡率,在我国均位于前三位,大部分患者在发病时已难以接受根治手术,病情进展快,预后差。随着基因检测技术的不断发展,分子生物标志物指导下的胃癌的精准治疗逐渐得以实现,HER2靶向药物的成功改善了部分患者的预后,越来越多的分子靶点被研究与挖掘,目前这些靶点的研究数据多为II期临床试验的结果,经历了从后线到前线的推进,相关III期临床试验正在设计或进行中。在这个逐渐完备与成熟的过程中,科学家与临床医师将紧密合作,发掘更多的新型靶点、确定统一的靶点检测手段与判读标准、推广多靶点检测的可及性、多种治疗模式联合应用提高疗效。最后,让我们一起期待下一个站在光里的英雄!


参考文献

1. Bang YJ, Van Cutsem E, Feyereislova A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376: 687-697.

2. Janjigian YY, Kawazoe A, Yanez P et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021; 600: 727-730.

3. Tabernero J, Hoff PM, Shen L et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol 2018; 19: 1372-1384.

4. Shitara K, Bang YJ, Iwasa S et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N Engl J Med 2020; 382: 2419-2430.

5. Peng Z, Liu T, Wei J et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: a single-arm phase II study. Cancer Commun (Lond) 2021; 41: 1173-1182.

6. Catenacci DV, Rosales M, Chung HC et al. MAHOGANY: margetuximab combination in HER2+ unresectable/metastatic gastric/gastroesophageal junction adenocarcinoma. Future Oncol 2021; 17: 1155-1164.

7. Meric-Bernstam F, Hamilton EP, Beeram M et al. Zanidatamab (ZW25) in HER2-expressing gastroesophageal adenocarcinoma (GEA): Results from a phase I study. Journal of Clinical Oncology 2021; 39: 164-164.

8. Xu J, Zhang Y, Wu J et al. The preliminary efficacy of KN026 (Anti-HER2 BsAb) in advanced gastric and gastroesophageal junction cancer patients with HER2 expression. Journal of Clinical Oncology 2021; 39: e16005-e16005.

9. Oh DY, Bang YJ. HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol 2020; 17: 33-48.

10. Huang D, Lu N, Fan Q et al. HER2 status in gastric and gastroesophageal junction cancer assessed by local and central laboratories: Chinese results of the HER-EAGLE study. PLoS One 2013; 8: e80290.

11. Sheng WQ, Huang D, Ying JM et al. HER2 status in gastric cancers: a retrospective analysis from four Chinese representative clinical centers and assessment of its prognostic significance. Ann Oncol 2013; 24: 2360-2364.

12. Hashimoto I, Oshima T. Claudins and Gastric Cancer: An Overview. Cancers (Basel) 2022; 14.

13. Sahin U, Koslowski M, Dhaene K et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res 2008; 14: 7624-7634.

14. Rohde C, Yamaguchi R, Mukhina S et al. Comparison of Claudin 18.2 expression in primary tumors and lymph node metastases in Japanese patients with gastric adenocarcinoma. Jpn J Clin Oncol 2019; 49: 870-876.

15. Xu B, Liu F, Liu Q et al. Highly expressed Claudin18.2 as a potential therapeutic target in advanced gastric signet-ring cell carcinoma (SRCC). J Gastrointest Oncol 2020; 11: 1431-1439.

16. Sahin U, Tureci O, Manikhas G et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol 2021; 32: 609-619.

17. Klempner SJ, Lee K-W, Metges J-P et al. Phase 2 study of zolbetuximab plus mFOLFOX6 in claudin 18.2-positive locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma (G/GEJ): ILUSTRO cohort 2. Journal of Clinical Oncology 2021; 39: e16063-e16063.

18. Qi C, Gong J, Li J et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28: 1189-1198.

19. Sahin U, Schuler M, Richly H et al. A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. Eur J Cancer 2018; 100: 17-26.

20. Tureci O, Sahin U, Schulze-Bergkamen H et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: the MONO study. Ann Oncol 2019; 30: 1487-1495.

21. Chu HY, Chen Z, Wang L et al. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front Immunol 2021; 12: 658097.

22. Kagey MH, He X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol 2017; 174: 4637-4650.

23. Wei R, Rodriguez RA, Mullor M et al. Analyzing the prognostic value of DKK1 expression in human cancers based on bioinformatics. Ann Transl Med 2020; 8: 552.

24. Edenfield WJ, Richards DA, Vukelja SJ et al. A phase 1 study evaluating the safety and efficacy of DKN-01, an investigational monoclonal antibody (Mab) in patients (pts) with advanced non-small cell lung cancer. Journal of Clinical Oncology 2014; 32: 8068-8068.

25. Arend R, Castro C, Matulonis U et al. 76 Patients (PTS) with recurrent gynecologic cancer whose tumors have activating wnt pathway mutations respond better to DKN-01, a DICKKOPF-1 (DKK1) inhibitor. International Journal of Gynecologic Cancer 2019; 29: A40.

26. Klempner SJ, Bendell JC, Villaflor VM et al. Safety, Efficacy, and Biomarker Results from a Phase Ib Study of the Anti-DKK1 Antibody DKN-01 in Combination with Pembrolizumab in Advanced Esophagogastric Cancers. Mol Cancer Ther 2021; 20: 2240-2249.

27. Klempner SJ, Sirard C, Chao J et al. 1384P DKN-01 in combination with tislelizumab and chemotherapy as a first-line therapy in unselected patients with advanced gastroesophageal adenocarcinoma (GEA): DisTinGuish trial. Annals of Oncology 2021; 32: S1048-S1049.

28. Klempner SJ, Chao J, Uronis HE et al. DKN-01 and tislelizumab ± chemotherapy as a first-line (1L) and second-line (2L) investigational therapy in advanced gastroesophageal adenocarcinoma (GEA): DisTinGuish Trial. Journal of Clinical Oncology 2022; 40: 292-292.

29. Goyal L, Sirard C, Schrag M et al. Phase I and Biomarker Study of the Wnt Pathway Modulator DKN-01 in Combination with Gemcitabine/Cisplatin in Advanced Biliary Tract Cancer. Clin Cancer Res 2020; 26: 6158-6167.

30. Das K, Gunasegaran B, Tan IB et al. Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer Lett 2014; 353: 167-175.

31. Schrumpf T, Behrens HM, Haag J et al. FGFR2 overexpression and compromised survival in diffuse-type gastric cancer in a large central European cohort. PLoS One 2022; 17: e0264011.

32. Catenacci DVT, Rasco D, Lee J et al. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients With Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J Clin Oncol 2020; 38: 2418-2426.

33. Wainberg ZA, Enzinger PC, Kang Y-K et al. Randomized double-blind placebo-controlled phase 2 study of bemarituzumab combined with modified FOLFOX6 (mFOLFOX6) in first-line (1L) treatment of advanced gastric/gastroesophageal junction adenocarcinoma (FIGHT). Journal of Clinical Oncology 2021; 39: 160-160.

34. Harrold E, Corrigan L, Barry S, Lowery M. Targeting MET amplification in Gastro-oesophageal (GO) malignancies and overcoming MET inhibitor resistance: challenges and opportunities. Expert Rev Gastroenterol Hepatol 2022; 16: 601-624.

35.   Yang Y, Wu N, Shen J et al. MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer 2016; 19: 778-788.

36.   Wang Y, Liu T, Chen G et al. Phase Ia/Ib Study of the Selective MET Inhibitor, Savolitinib, in Patients with Advanced Solid Tumors: Safety, Efficacy, and Biomarkers. Oncologist 2022.